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Résumé

Cette thèse porte sur l’analyse statistique et mathématique de la croissance cellulaire à
l’échelle individuelle sous l’effet d’un stress. À partir de l’analyse des données recueillies
par James Broughton et Sebastián Jaramillo sous la direction de Meriem El Karoui, nous
avons construit différents modèles permettant une scompréhension à différents niveaux de
l’impact que la réponse hétérogène au stress génotoxique (réponse SOS) a sur la croissance
d’une population de bactéries E. coli. Pour modéliser la dynamique de ces populations on
utilise des processus stochastiques à valeurs mesures.

Nous construisons tout d’abord un modèle stochastique basé sur le modèle "adder" de
contrôle de la taille, étendu pour incorporer la dynamique de la réponse SOS et son effet sur
la division cellulaire. Le cadre choisi est paramétrique et le modèle est ajusté par maximum
de vraisemblance aux données de lignées individuelles obtenues en mother machine. Cela
nous permet de comparer quantitativement les paramètres inférés dans différents environ-
nements.

Nous nous intéressons ensuite aux propriétés ergodiques d’un modèle plus général que
"adder", répondant à des questions ouvertes sur son comportement en temps long. On con-
sidère un flot déterministe général et un noyau de fragmentation non nécessairement auto-
similaire. Nous montrons l’existence des éléments propres. Ensuite, une h-transformée de
Doob avec la fonction propre nous ramène à l’étude d’un processus conservatif. Enfin, en
montrant une propriété de petite set pour les compacts de l’espace d’états, nous obtenons
alors la convergence exponentielle du modèle.

Finalement, nous considérons un modèle bitype structuré en âge modélisant la plasticité
phénotypique observée dans la réponse au stress. Nous étudions la probabilité de survie et le
taux de croissance de la population en environnement constant et périodique. Nous mettons
en lumière un trade-off pour avoir la survie de la population, ainsi qu’une sensibilité par
rapport aux paramètres du modèle qui n’est pas la même pour la probabilité de survie et
pour le taux de croissance.

Nous concluons avec une section indépendante, initiée durant le CEMRACS 2022. Nous
étudions numériquement la propagation spatiale des populations structurés en taille mod-
élisant le mouvement collectif de clusters de Myxobactéries à travers de systèmes d’équations
de réaction-diffusion.
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Abstract

This thesis focuses on understanding individual-scale cell growth under stress. Starting
from the analysis of the data collected by Sebastián Jaramillo and James Broughton under
the supervision of Meriem El Karoui, we have developed various models to comprehend the
impact of the heterogeneous response to genotoxic stress (SOS response) on the growth of
a Escherichia coli bacteria populations. We employ measure-values stochastic processes to
model the dynamics of these populations.

Firstly, we construct a stochastic model based on the "adder" size-control model, ex-
tended to incorporate the dynamics of the SOS response and its effect on cell division. The
chosen framework is parametric, and the model is fitted by maximum likelihood to individual
lineage data obtained in mother machine. This allows us to quantitatively compare inferred
parameters in different environments.

Next, we explore the ergodic properties of a more general model than the "adder," ad-
dressing open questions about its long-time behaviour. We consider a general deterministic
flow and a fragmentation kernel that is not necessarily self-similar. We demonstrate the ex-
istence of eigenelements. Then, a Doob h-transform with the foud eigenfunction reduces the
problem to the study of a conservative process. Finally, by proving a "petite set" property
for the compact sets of the state space, we obtain the exponential convergence.

Finally, we consider a bitype age-structured model capturing the phenotypic plasticity
observed in the stress response. We study the survival probability of the population and the
population growth rate in constant and periodic environments. We evince a trade-off for
population establishment, as well as a sensitivity with respect to the model parameters that
differs for survival probability and growth rate.

We conclude with an independent section, collaborative work initiated during CEM-
RACS 2022. We investigate numerically the spatial propagation of size-structured popula-
tions modeling the collective movement of Myxobacteria clusters via a system of reaction-
diffusion equations.
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Chapter 1

Introduction générale

"[W]hile I have sought to shew
the naturalist how a few
mathematical concepts and
dynamical principles may help
and guide him, I have tried to
shew the mathematician a field
for his labour,–a field which few
have entered and no man has
explored. Here may be found
homely problems, such as often
tax the highest skill of the
mathematician, and reward his
ingenuity all the more for their
trivial associations and outward
semblance of simplicity."

D’Arcy Thompson (On Growth
and Form, 1917)

1.1 Brève revue du contexte
Cette thèse naît d’une collaboration étroite entre mathématiciens et biologistes établie à par-
tir des observations réalisées par Sebastián Jaramillo et James Broughton dans le cadre de
leurs thèses doctorales sous la direction de Meriem El Karoui à l’Université d’Édimbourg. Ils
ont observé que lors de l’exposition des cellules bactériennes d’Escherichia coli à une faible
concentration de ciprofloxacine (un antibiotique qui crée des cassures double-brin de l’ADN),
la réponse individuelle au stress est significativement variable d’une cellule à l’autre, bien
qu’elles soient isogéniques (partageant le même matériel génétique) et grandissent dans les
mêmes conditions.
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CHAPTER 1. INTRODUCTION GÉNÉRALE

À l’intérieur d’E. coli, la détection d’endommagements de l’ADN provoque une réponse
moléculaire complexe appelée réponse SOS, induisant la réparation des cassures double-brin
et dont l’intensité peut être suivie au cours du temps grâce à des marqueurs fluorescents.
Ces mesures d’intensité ont mis en évidence une importante hétérogénéité des réponses en-
tre cellules individuelles, variant de très faibles à très fortes, avec d’importants impacts sur
leur morphologie et croissance. En effet, la réponse SOS induit l’expression de protéines
qui provoquent l’arrêt de la division, sans pour autant arrêter la croissance cellulaire. De ce
fait, l’hétérogénéité des réponses SOS se voit ainsi traduite en hétérogénéité de tailles carac-
térisée par l’émergence d’une sous-population de très longues bactéries dites filamenteuses.
De plus, en arrêtant leur division, ces bactéries peuvent être capables de persister après la fin
du traitement antibiotique, ce qui fait de ce phénomène un phénomène d’importance cruciale
pour la compréhension des mécanismes d’antibiorésistance, sujet majeur de la recherche
biomédicale contemporaine et source de croissante préoccupation en santé publique.

Typiquement, lors de mesures de croissance de la population, c’est l’accroissement de
la masse totale de la population qui est observée, et non le nombre de cellules. Ainsi les
filaments, bien que peu nombreux (5-10% de la population totale en fonction du milieu de
croissance [82]), contribuent de manière importante à la croissance observée de la popu-
lation, beaucoup moins au nombre total de cellules. Il est donc nécessaire de comprendre
l’évolution de la population à l’échelle des cellules individuelles pour tenir compte de ces
différents comportements. Pour ce faire, il est fondamental de bien comprendre les mécan-
ismes de la division cellulaire qui contrôlent l’évolution temporelle du nombre de cellules à
l’échelle individuelle. C’est ensuite au mathématicien de traduire de tels mécanismes en taux
de division dépendant des traits (taille, âge, constitution moléculaire, etc.) de la bactérie.
Ce problème s’insère dans une quête plus large et aujourd’hui en plein essor, propulsée par
l’explosion du développement de techniques de microscopie single-cell, et qui amène les bi-
ologistes à se poser une question naturelle : comment ces nouvelles observations single-cell
se confrontent-elles aux comportements macroscopiques déjà connus ?

Cette question est néanmoins bien antérieure à l’avènement de ces nouvelles techniques
de microscopie. Déjà au début du XXe siècle, dans son aujourd’hui célèbre On Growth
and Form, dont l’épigraphe porte quelques lignes, le biologiste écossais D’Arcy Thompson
s’intéressa à l’émergence de la diversité morphologique du vivant à partir de mécanismes mi-
croscopiques. Il essaya d’expliquer à travers des modèles mathématiques simples la manière
dont le taux de croissance façonne la forme des cellules, tissus, organes, et populations,
reliant subtilement ces différentes échelles. Il souligna d’ailleurs avec finesse l’une des dif-
ficultés principales de la comparaison des données microscopiques et macroscopiques, en
mettant en évidence ce que l’on appellerait aujourd’hui un biais par l’âge:

We must be very careful, however, how we interpret such a Table [montrant le
ralentissement moyen de la croissance chez l’homme au cours de l’âge]; for it
records the character of a population, and we are apt to read in it the life-history
of the individual. The two things are not necessarily the same. That a man
grows less as he grows older all old men know; but it may also be the case, and
our Table may indicate it, that the short men live longer than the tall. ([137]
p.92)
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1.2. RÉSULTATS PRINCIPAUX ET SYNOPSIS DE LA THÈSE

L’observation de la croissance bactérienne étant bien plus élusive que l’observation de
la croissance humaine, il a fallu atteindre le développement de techniques de microscopie
avant que les microbiologistes puissent se poser les mêmes questions. La variabilité dans la
prolifération cellulaire a été mise en évidence au moins depuis le papier de 1932 de Kelly
et Rahn [88] chez E. areogenes et B. cereus. Dans ces travaux, ils suivirent à la main plus
de 1700 individus durant 4 générations, montrant une considérable variation de leur taux
de division (rate of fission). Ils remarquèrent la dépendance en âge de la distribution des
temps de division et Rahn suggérera lui-même un modèle microscopique pour expliquer cette
variabilité, à partir duquel il déduira un taux de division résultant de la convolution de lois
exponentielles. David Kendall s’intéressera au sujet (voir [89] et les références citées dans
cet ouvrage) et formalisant le modèle de Rahn comme un processus de Markov, essayera
d’estimer les valeurs des paramètres du taux de division à l’aide du calcul du coefficient
de variation (le ratio entre l’écart-type et la moyenne). Plus tard, une théorie générale
des processus stochastiques de branchement avec des taux de division âge-dépendents sera
développée par Bellman et Harris en 1948 et 1952 [13].

La suite est bien connue, et le célèbre processus de Bellman-Harris se convertira en
outil classique. Néanmoins, la dérivation des liens entre ce type de modèle stochastique
et des modèles de population équivalents, l’inférence des paramètres, et en particulier, la
compréhension quantitative du biais par l’âge qu’il faut considérer en passant de l’un vers
l’autre, demeurent un sujet majeur en mathématiques et en biologie. Ce n’est que récem-
ment que le développement des probabilités modernes a permis la formulation rigoureuse des
dynamiques stochastiques individu-centrées des populations structurées en âge [57, 140],
et l’analyse de l’échantillonnage des lignées individuelles dans l’arbre généalogique d’une
population [105]. Du côté de la biologie, le développement récent des techniques de mi-
crofluidique a permis de capturer, manipuler et suivre de très petits échantillons bactériens,
que ce soit des petites populations ou des cellules individuelles, pendant des temps de plus
en plus longs [142, 72, 116]. Un clair exemple est le montage expérimental dit mother ma-
chine [142], avec lequel J. Broughton, S. Jaramillo et M. El Karoui ont acquis les données
que l’on analysera (travaux doctoraux de J. Broughton, non publiés à cette date).

1.2 Résultats principaux et synopsis de la thèse

Cette thèse est constituée de quatre chapitres suivant l’introduction. Les résultats résumés
ci-dessous ont pour but commun de contribuer à la compréhension de l’impact quantitatif
de l’hétérogénéité intercellulaire sur les observables macroscopiques d’une population de
cellules sous l’action d’un stress. En combinant une fine observation des données single-
cell, en étroite collaboration avec les biologistes du laboratoire de M. El Karoui, ainsi que
l’utilisation des outils issus de la théorie de processus stochastiques à valeur mesures, de
la théorie de semigroupes et de l’analyse d’équations aux dérivées partielles (EDP), cette
approche interdisciplinaire vise à améliorer notre compréhension des dynamiques complexes
au sein des populations cellulaires, dans ses différentes échelles.

13



CHAPTER 1. INTRODUCTION GÉNÉRALE

1.2.1 Chapitre 2 : Modélisation et calibration du modèle « adder » à
partir des données de cellules individuelles sous stress
génotoxique

Dans le deuxième chapitre, nous construisons un modèle de la croissance d’une population
de bactéries E. coli sous l’effet de stress antibiotique à la lumière des données recueillies par
James Broughton, Sebastián Jaramillo et Meriem El Karoui [82, 24] en utilisant le montage
microfluidique connu comme mother machine (MM) [142, 116], représentée par la Fig. 1.1.
Dans ce dispositif, des bactéries isolées sont piégées dans des cavités étroites qui permet-
tent le suivi des lignées cellulaires individuelles au cours du temps (Fig. 1.1A). Les données
produites sont d’une grande résolution temporelle et d’échantillons. En effet, un seul dis-
positif peut comporter autour de 104 cavités, permettant l’acquisition d’un grand nombre de
lignées indépendantes se développant dans les mêmes conditions et pendant de très longues
périodes, réalisant ainsi ce que l’on pourrait considérer comme des réelles expériences de
Monte-Carlo. Les acquisitions d’image sont effectuées à des intervalles de temps réguliers
et permettent de suivre la taille et le niveau de fluorescence des cellules individuelles au fil
du temps (Fig. 1.1B-C).

Figure 1.1: La mother machine (MM) A. Schéma représentant les cavités parallèles de la mother
machine. B. Kymographe constitué des images de microscopie acquises par J. Broughton dans une
cavité (par exemple, celle mise en évidence en bleu dans le panneau A). Les acquisitions sont effec-
tuées à des intervalles équidistants de longueur ∆t = 5 minutes. À chaque instant, la fluorescence
mesurant l’intensité de la réponse SOS est mesurée. La lignée mère correspond à la trajectoire de la
cellule au bas du dispositif (mise en évidence en rose). C. Exemple de la taille et de la fluorescence
mesurées à partir de la lignée mère dans le kymographe.

À partir d’une analyse originale de ces données, nous proposons un modèle stochastique
qui incorpore les sources de variabilité impactant la dynamique de croissance. En premier
lieu, on considère une population des cellules en absence de stress, dont la dynamique de
division est décrite par le modèle « adder » [133] de contrôle de la taille cellulaire. Sous ce
modèle, le temps de division de chaque bactérie est décidé en fonction de la taille a qu’elle a
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rajouté depuis sa naissance, et ce, indépendamment de sa taille initiale, i.e.

P(Taille ajoutée jusqu’à la division ≥ a) = S(a) = exp

(
−
∫ a

0

B(s)ds

)
, (1.1)

oùB est le taux de division qu’on cherchera à estimer. La surprenante précision de ce simple
modèle phénoménologique pour prédire les distributions de taille de E. coli a été démontré
à plusieurs reprises et sous diverses conditions lors de la dernière décennie [129, 28]. Avec
cette simple règle, il a été possible d’expliquer les distributions de tailles stationnaires et de
tailles à la division que des modèles plus classiques structurés seulement en taille ou en âge
étaient incapables de récupérer fidèlement [133, 46].

On note a > 0 la taille ajoutée depuis la naissance et y > 0 la taille actuelle de la bactérie.
On formule le modèle adder comme un processus stochastique Zt à valeurs mesures, à sup-
port dans R2

+ (structuré en âge a et taille y) et déterministe par morceaux. On considère en
effet que, entre deux divisions aléatoires, chaque cellule grandit à taux exponentiel λ > 0,
commun pour toute la population. Suivant l’approche introduite par [57, 140], en utilisant
une représentation trajectorielle de Zt par rapport à une mesure ponctuelle de Poisson, on
montre que pour toute fonction f ∈ C1,1

b (R2
+), Zt s’écrit comme une semi-martingale de la

forme

⟨Zt, f⟩
def
=

∫
R2
+

f(x)Zt(dx) = ⟨Z0, f⟩+
∫ t

0

⟨Zs,Qf⟩ ds+ M f
t , (1.2)

où M f
t est une martingale de carré intégrable, et le générateur infinitésimal Q est donnée

pour toute fonction f ∈ C1,1
b (R2

+) par

Qf(a, y) = λy (∂a + ∂y) f(a, y) + λyB(a)

(
2

∫ 1

0

f(0, ρy)F (ρ)dρ− f(a, y)
)
, (1.3)

où F est un noyau de probabilité à support dans [0, 1], décrivant une division auto-similaire,
i.e. dont la loi dépend uniquement de la proportion entre la taille de la mère et sa fille, et
non de la taille absolue de la mère.

L’inférence statistique des taux de division a été étudiée en détail dans d’autres mod-
èles connexes et selon des approches complémentaires (voir, par exemple, le chapitre de
revue de Doumic et Hoffmann sur le sujet [46]). On pourra citer en particulier les travaux
de Osella et al. [117], Doumic et al. [47], Hoffmann et Olivier [78] et Van Heerden et
al. [141], où à partir d’observations single-cell de MM, on infère le taux de division en
utilisant des estimateurs non paramétriques. Concernant l’estimation de B dans notre cas,
comme déjà remarqué par [46], l’hypothèse adder réduit le modèle structuré en taille et
âge à un simple modèle de renouvellement, auquel on peut appliquer les techniques clas-
siques d’analyse de survie (voir par exemple le livre [135]). Par exemple, si on dispose d’un
échantillon (Ai)i∈J1,NK i.i.d. de fonction de répartition 1 − S, on peut définir l’estimateur
non-paramétrique classique :

B̂(a) =

∑N
i=1Kh(a− Ai)∑N

i=1 1Ai≤a
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avec Kh = K(a/h)/h, où K est un bon noyau (gaussien, par exemple) et h > 0 est une
fenêtre donnée. La Proposition 4.1 de Doumic et Hoffmann [78] montre que si B es α-
höldérienne, la valeur optimale de h donne un taux de converge d’ordreN−α/(2α+1) de B̂ vers
B. Dans notre cas, on cherche un cadre statistique qui permette non seulement l’estimation
de B à partir des données, mais qui soit aussi capable de quantifier l’effet des covariables
continues (intensité de fluorescence de la réponse SOS) et qualitatives (milieu de culture)
que l’on rajoutera dans la seconde partie du chapitre. De même, on souhaite que le cadre
choisi puisse permettre la prédiction (extrapolation) du taux de division, que l’on pourra réu-
tiliser pour réaliser des simulations à partir du modèle ajusté. Ces raisons nous ont conduit
naturellement vers un cadre statistique paramétrique. Du côte biologique, cette approche
nous permet de fournir des résultats quantitatifs et biologiquement interprétables au mo-
ment de comparer les différents setup expérimentaux. De plus, nous apportons la preuve
numérique que, pour le modèle proposé, la maximisation de vraisemblance est numérique-
ment tractable. Cela peut également permettre des extensions pertinentes dans notre cadre
paramétrique, telles que l’inclusion d’effets aléatoires (modèles dits de fragilité ou frailty,
en anglais [79]), que nous discutons dans la conclusion du chapitre.

Finalement, la richesse des données acquises dans le laboratoire de M. El Karoui (à la fois
en MM et en population, pour les mêmes souches et sous les mêmes conditions) nous permet
de quantifier l’écart entre les données de population et de cellules individuelles. Ainsi, sous
une hypothèse de stationnarité, que l’on démontre au Chapitre 3, on confronte les données
single-cell à des données de population acquises en absence de stress. On met en évidence
un décalage systématique qui peut être dû à un effet exogène limitant la croissance de E.
coli en MM, par rapport aux mesures de population.

En second lieu, on s’intéresse à la croissance sous stress. On couple ce modèle à un mod-
èle stochastique de diffusion représentant l’intensité de la réponse au stress (réponse SOS)
comme une variable d’état réelle (Xt)t≥0 évoluant en temps. En particulier on considère un
modèle d’Ornstein-Uhlenbeck{

dXt = −θc(t)
(
µc(t) −Xt

)
dt+ ζ2c(t)dBt

c(t) = 1[τ0,τ1[(t)

où [τ0, τ1[ est l’intervalle d’administration de l’antibiotique, les paramètres {θi, µi, ζ
2
i }i∈{0,1}

modélisent l’action de l’antibiotique sur la dynamique de la réponse au stress et Bt est un
mouvement brownien standard. Motivé par les mesures expérimentales de Xt par marquage
de fluorescence, on construit un nouveau modèle de branchement décrivant l’effet de cette
variable sur la dynamique de croissance et division modélisée en premier lieu. À cet égard,
on considère des taux de division de la forme B(a, x) dépendant de la taille ajoutée et de la
valeur Xt = x au temps de division.

De plus, les observations montrent la présence des divisions asymétriques, dépendantes
de la taille y de la mère, que l’on modélise par un noyau k(y, ·) qui n’est donc plus auto-
similaire. En effet, lorsque E. coli devient longue, un système de régulation intracellulaire
agit pour définir la position de la division cellulaire, qui n’est plus nécessairement à la moitie
de la cellule, mais peut aussi arriver de façon périphérique. À la lumière des données, on
propose de modéliser k(y, ·) comme un mélange uniforme de N(y) lois Bêta dont le nombre
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N(y) ∈ N représente le nombre de positions où la division pourrait avoir lieu dans une
bactérie de taille y, s’écrivant ainsi

k(y, ρ) =
1

N(y)

N(y)∑
n=1

FN(y)
n (ρ) , (1.4)

où pour tout N > 1, {FN
n , n ∈ J1, NK} est une famille de N densités de loi Bêta, dont

on estime les paramètres par maximum de vraisemblance à partir des données. Ainsi, le
nouveau processus est généré à tout temps t ≥ 0 par le générateur non homogène

Q̃(t)f(a, y, x) =− θc(t)(µc(t) − x)∂xf(a, y, x) +
ζ2c(t)
2
∂xxf(a, y, x)

+ λy (∂a + ∂y) f(a, y, x) + λyB(a, x)

(∫ 1

0

f(0, ρy, x)k(y, ρ)dρ− f(a, y, x)
)
.

En particulier, on utilise un modèle paramétrique flexible basé sur la distribution Gamma
généralisé [131], qui permet de générer des fonctions B(a, x) avec des propriétés et inter-
prétations biologiques très vastes. Cela nous permettra de quantifier l’effet perturbatif de
la réponse au stress sur les mécanismes de contrôle de la taille chez E. coli. De plus, on
met en évidence que l’hétérogénéité de la réponse SOS peut biaiser le taux de division adder
observé. Cela permet d’expliquer l’émergence apparente d’un régime de perte de contrôle,
où le taux de division diminuerait pour les bactéries plus longues.

1.2.2 Chapitre 3 : Ergodicité exponentielle d’un modèle général
structuré en taille et âge

Cette partie a été publiée sous forme d’article dans Acta Applicandae Mathematicae [103].
L’hypothèse de stationnarité qui est clé pour la comparaison des mesures individuelles

et de populations est démontrée dans le troisième chapitre. Cela est fait pour une version
plus générale du modèle déterministe par morceaux structuré en taille et âge introduit dans
le chapitre 2. On étudie le comportement en temps long du semigroupe de transition Mt :
C1,1

b (R2
+)→ C1,1

b (R2
+) associé au processus Zt défini par

Mtf(a, y)
def
= Eδ(a,y) [⟨Zt, f⟩] = f(a, y) +

∫ t

0

Ms (Qf) (a, y)ds

avec la méthode probabiliste dite de Harris [71, 69, 10, 14], suivant la théorie initiée par
Doeblin [40], et largement développée et popularisée par Meyn et Tweedie [112]. À cette
fin, on établit préalablement des estimations concernant les éléments propres du générateur
infinitésimalQ, grâce à des méthodes analytiques basées sur le théorème de Krein-Rutman,
suivant les idées développés notamment par B. Perthame [119] pour l’étude des équations
de transport.

On considère un modèle plus général que l’adder, caractérisé par un nouveau générateur
Q défini pour toute f ∈ C1,1

b (R2
+) par

Qf(a, y) = g(a, y)⊤∇f(a, y) + β(a, y)

(∫ ∞

0

f(0, z)k(a, y, z)dz − f(a, y)
)
,
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où g(a, y) = (g1(a, y), g2(a, y)) contient le taux de vieillissement g1(a, y) et le taux d’élongation
g2(a, y) d’un individu d’âge a et taille y, β(a, y) est le taux de division d’un individu d’âge a
et taille y, et k(a, y, z) est un noyau à densité décrivant les tailles z de la descendance d’un
individu d’âge a et taille y au moment de sa division. Ainsi, sont cas particuliers le modèle
adder classique, donné par g1(a, y) = g2(a, y) = λy et k(a, y, z) = k(y, z) = 2

y
F (z/y), et le

modèle adder avec division asymétrique, où le noyau k est donné par (1.4).
On utilise la version du théorème ergodique de Harris formulée sous le nom de Théorème

d’ergodicité V -uniforme par Meyn et Tweedie [111] comme suit:

Théorème 3.2.1 (Théorème 6.1 de [111]). Soit (Xt)t un processus de Markov continu à
droite aux valeurs dans un espace polonais localement compact E muni de sa tribu boréli-
enne B(E), et soit A le générateur infinitésimal de X. Soit Pt le semigroupe de transition
associé. Si les deux conditions suivantes sont vérifiées :

(H1) Condition de minorisation (dite de Doeblin ou de petite set) pour les ensembles com-
pacts deE . Tout ensemble compact de E est petite pour un squelette deX, c’est à dire,
pour tout compact K ⊂ E il existe une mesure de probabilité discrète µ = (µn)n∈N
sur N et un ∆ > 0 telle qu’il existe une mesure non-triviale ν (qui peut dépendre de ∆
et µ) sur B(E) qui pour tout x ∈ K vérifie la borne inférieure :

⟨µ, δxP·f⟩ =
∑
n∈N

µnPn∆f(x) ≥ ⟨ν, f⟩ .

(H2) Condition de Foster-Lyapunov

Il existe une fonction coercive V , i.e. V (x) → +∞ lorsque ||x|| → +∞, telle que
V (x) ≥ 1 pour tout x, et des constantes c > 0, d <∞ telles que

AV (x) ≤ −cV (x) + d ∀x ∈ E.

Sous (H1) et (H2), il existe une unique mesure de probabilité non-triviale π et constantes
C, ω > 0 telles que pour tout x ∈ E et t ≥ 0

||δxPt − π||V ≤ CV (x) exp(−ωt), (1.5)

où ||·||V est une norme définie par

||µ||V := sup
g:||g||≤V

|⟨µ, g⟩|

En particulier, ||µ||1 = ||µ||TV est la norme de variation totale.

Or, le semigroupe généré par Q n’est pas nécessairement conservatif. Bien que récem-
ment Bansaye et al. aient établi dans [10] un résultat étendant le théorème de Harris aux
semigroupes non conservatifs, il s’avère que les conditions dites de contrôle du ratio de
masses (hypothèses (A3) et (A4) ibidem) sont assez difficiles à montrer dans le cas à deux
dimensions continues (taille et âge). Ces conditions sont liées à l’irréductibilité du processus
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et sont associées à l’existence d’un temps de couplage à partir duquel les trajectoires issues
de toute condition initiale se croisent (voir par exemple la discussion dans [34]). La difficulté
dans notre cas est de construire de telles trajectoires, car le flot déterministe déterminé par
g ne peut explorer R2

+ que par des trajectoires unidimensionelles. Qui plus est, les transi-
tions sont non locales et dégénérées : bien que les tailles de cellules filles suivent une loi à
densité k(a, y, ·), l’âge de cellules nouveau-nées est renvoyé de façon déterministe à 0. La
condition de petite set établie par (H1) permet de contourner cette difficulté, car au lieu de
demander un temps de couplage uniforme pour tout condition initiale, elle autorise à prendre
une moyenne discrète en temps par rapport à la loi d’échantillonnage µ. Le lecteur habitué
à d’autres versions aujourd’hui plus classiques du théorème de Harris peut se référer à la
discussion faite au Chapitre 3, où l’on commente à propos de ces versions équivalentes.

Pour appliquer ce théorème on doit d’abord construire un bon semigroupe conservatif,
qui nous permette ensuite de remonter au comportement ergodique de Mt. Pour ce faire, on
montre d’abord que sous les hypothèses 3.3.3, il existe une unique fonction propre h : R2 →
R+ et valeur propre Λ > 0 solutions du problème aux valeurs propres

Qh = Λh. (1.6)

Cela nous permet de construire un processus auxiliaire de générateur

Af(a, y) = g(a, y)⊤∇f(a, y) + β(a, y)

(∫ ∞

0

(f(0, z)− f(a, y)) h(0, z)
h(a, y)

k(a, y, z)dz

)
dont le semigroupe associé Pt est Markovien et conservatif (Pt1 ≡ 1) et peut donc être
étudié avec les techniques de Meyn et Tweedie. Ensuite, on récupère le semigroupe associé
au processus originel via une h-transformée de Doob:

Mtf(a, y) = eΛth(a, y)Pt

(
f

h

)
(a, y).

Cela nous permet finalement d’obtenir le résultat principal du chapitre:

Théorème 3.2.4 (Ergodicité exponentielle). Sous les Hypothèses 3.3.3 et si la condition
(H2) est vérifiée pour une fonction coercive V : R2

+ → R+, alors il existe une unique mesure
de probabilité π et des constantes C, ω > 0 telles que pour toute condition initiale µ0 ∈
Mp(R2

+)

||e−Λtµ0Mt − ⟨µ0, h⟩ π||V ≤ C ⟨µ0, V ⟩ e−ωt. (1.7)

Les idées des preuves sont les suivantes:

1. Existence de h

a) On commence par réduire le problème (1.5) à un problème scalaire grâce à la
propriété de renouvellement en a. Dans le Lemme 4.4.2 on montre que (Λ, h) est
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solution de (1.5) (et d’une certaine condition limite) avec Λ > 0 et h ∈ W 1,∞
loc (R2

+)
si et seulement si

h(a, y) =

∫ ∞

0

h(0, z)KΛ(a, y, z)dz

pour un certain noyau KΛ : R3
+ → R+ dont les propriétés spectrales déterminent

celles de Q. On considère donc l’opérateur Gλ définie pour toute fonction f ∈
C1(R+) par

Gλf(y) =
∫ ∞

0

f(z)Kλ(0, y, z)dz ∀y > 0. (1.8)

b) On démontre ensuite l’existence de Λ > 0 et h ∈ W 1,∞
loc (R2

+) solutions de (1.5)
adaptant un schéma classique construit sur le théorème de Krein-Rutman, comme
suit :

i. On construit une version tronquée de Gλ qui est compacte. On applique
ensuite le théorème de Krein-Rutman pour montrer que pour tout λ ≥ 0
l’opérateur tronqué admet une unique valeur propre µλ ≥ 0 et fonction pro-
pre hλ ≥ 0, à une normalisation près.

ii. On montre qu’il existe un unique λ0 > 0 tel que µλ0 = 1. De plus, on montre
que la valeur de λ0 est uniformément bornée pour toute troncature de Gλ.

iii. On passe à la limite et on montre que les éléments propres limites (λ0, hλ0)
de la famille de troncatures compactes de Gλ sont effectivement solutions du
problème aux valeurs propres.

2. Preuve de la condition de Doeblin (H1)

En conditionnant par rapport aux temps de division, on écrit l’action du semigroupe
Pt comme la solution mild d’une équation recursive (formule de Duhamel (3.39)). En-
suite, pour toute fonction f mesurable et bornée, on peut minorer Ptf(a, y) en faisant
des itérations successives de la formule et gardant les termes que l’on sait contrôler
sous les hypothèses 3.3.3. La preuve consiste donc essentiellement à estimer des
bornes inférieures de ces termes sur toute trajectoire issue d’un compacte donné.

On conclut le chapitre avec l’application au modèle adder où Q est donné par (1.3), pour
lequel on montre la convergence exponentielle vers sa mesure stationnaire. En particulier,
pour le modèle adder avec croissance exponentielle les éléments propres sont explicites :
h(a, y) = y et Λ = λ (le taux d’élongation), et la condition de Lyapunov (H2) est vérifiée
par V (a, y) = y−1 + y. Le résultat général s’étend aussi au cas où la croissance n’est pas
exponentielle ou les divisions ne sont pas symétriques. Cet ensemble de résultats permet de
répondre ainsi à des questions ouvertes laissées par l’analyse de Gabriel et Martin [62].

1.2.3 Chapitre 4 : Trade-offs dans un modèle de prolifération
bactérienne sous stress

Dans le quatrième chapitre, on cherche à introduire dans l’analyse un élément clé, délibéré-
ment délaissé dans nos premiers chapitres : la présence de mort cellulaire. En effet, même
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aux doses supposées sous-létales de ciprofloxacine, on peut observer un nombre non nég-
ligeable de bactéries qui arrêtent totalement leur croissance et division. Or, l’induction de
la réponse SOS devrait avoir un rôle protecteur. De fait, notre analyse des données montre
que la réponse SOS n’est pas seulement hétérogène entre chaque cellule, mais également
que, au cours de la vie d’une bactérie, l’intensité de la réponse peut fluctuer significative-
ment, donnant émergence à un phénomène de plasticité phénotypique. À certains moments,
de façon aléatoire mais dépendante de l’environnent et de l’intensité du stress, E. coli peut
passer de son état normal d’apparente inactivité de réponse SOS à un état de forte activ-
ité. On observe ainsi, lorsque l’antibioitique est présent, des distributions bimodales dans
le niveau de réponse SOS. Ensuite, après une ou plusieurs divisions, la progéniture d’une
cellule qui a très fortement induit la réponse SOS est capable de retourner à l’état normal.

Dans le but d’améliorer la compréhension phénoménologique et quantitative de l’intérêt
évolutif de cette stratégie de plasticité pour répondre au stress, nous formulons un modèle
stochastique minimal qui préserve les éléments principaux du phénomène. Ainsi, nous gar-
dons une structure en âge, tandis que la variabilité de la réponse SOS est résumée en deux
traits discrets. Nous considérons ainsi des cellules vulnérables (type i = 0), susceptibles
de mourir au moment de leur division avec probabilité p ∈ (0, 1), et des cellules tolérantes
(type i = 1), dont les temps de divisions sont néanmoins beaucoup plus longs. Les temps
de divisions des deux phénotypes sont caractérisés par leur taux de division β0(a) et β1(a).
Les cellules vulnérables peuvent devenir tolérantes à taux α > 0. À leur tour, les cellules
tolérantes ne peuvent redevenir vulnérables qu’après leur division, ce qui arrive avec une une
probabilité de rétablissement γ ∈ (0, 1). On formalise cette dynamique avec un processus
stochastique Zt à valeurs mesures à support sur R+ × {0, 1} tel que

Zt(da, di) = Zt(da, {0})δ0(di) + Zt(da, {1})δ1(di)

et qui admet pour toute f ∈ C1,·(R+ × {0, 1}) et t ≥ 0 la décomposition en semimartingale∫
(f(a, 0)Zt(da, {0}) + f(a, 1)Zt(da, {1}))

=

∫
(f(a, 0)Z0(da, {0}) + f(a, 1)Z0(da, {1})) (1.9)

+

∫ t

0

∫
(Qf(a, 0)Zs(da, {0}) +Qf(a, 1)Zs(da, {1}))ds+Mf

t ,

oùMf
t est une martingale de carré intégrable et le générateur Q est défini par

Qf(a, i) = ∂af(a, i) + (1− i)α(f(a, 1)− f(a, 0))− βi(a)f(a, i)
+ 2(1− i)(1− p)βi(a)f(0, 0) + 2iβi(a)(γf(0, 0) + (1− γ)f(0, 1))

(1.10)

On s’intéresse au comportement en temps long deZt. En premier lieu, on met en évidence
un trade-off explicite entre le taux de switch phénotypique et la probabilité de récréer des
individus vulnérables qui dépend du niveau de stress p. Si on note λα,γ le taux de croissance
exponentielle de la population et πα,γ

i la probabilité d’extinction de la population issue d’une
cellule inviduelle d’âge 0 et type i on montre
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Théorème 4.3.5 et 4.4.5. Sous les hypothèses 4.2.1 on a

λα,γ > 0 ⇐⇒ πα,γ
0 , πα,γ

1 < 1 ⇐⇒
{
p ≤ 1

2

}
∪
{
p >

1

2
and γ <

1

2

(
1 +

q

(2p− 1)(1− q)

)}
,

où q =
∫ +∞
0

α exp
(
−
∫ a

0
(α + β0(s))ds

)
da est la probabilité qu’une cellule de type 0 switche

vers le type 1 avant se diviser.

Ensuite, on analyse les sensibilités de λα,γ et de πα,γ
i par rapport aux variations de α et

γ. En contraste avec les résultats de Campillo et al. [27], qui s’intéressent aussi aux liens
entre les deux mesures de fitness, mais pour un modèle mono-type structuré en taille, nous
montrons que la présence de plasticité phénotypique permet de casser la monotonie espérée
entre les variations du paramètre Malthusian et la probabilité de survie de la population. En
effet on montre que des variations de α et γ qui font diminuer la probabilité de survie de la
population, peuvent faire augmenter le taux de croissance global de la population. C’est le
résultat principal suivant :

Théorème 4.5.6. Sous les hypothèses 4.2.1 et 4.2.4, on a pour tout α ≥ 0.

∂γπ
α,γ
0 > 0 et ∂γπ

α,γ
1 > 0

En revanche, pour tout α ≥ 0 il existe une valeur critique p̄ ≤ 1/2 tel que pour tout γ ∈ (0, 1)

∂γλα,γ > 0 ⇐⇒ p < p̄,

∂γλα,γ < 0 ⇐⇒ p > p̄.

Ce résultat nous indique que seules les « stratégies extrémales » de plasticité phénotyp-
ique (γ = 0 ou γ = 1) sont optimales au sens Darwinien du maximum de fitness λα,γ. Pour
conclure, on montre que l’intérêt des stratégies de plasticité non triviales émerge quand
l’environnement (i.e. la probabilité de mort p) est autorisé à fluctuer au cours du temps.
Pour ce faire, nous considérons le cas où la probabilité de mort est une fonction du temps
p(t) continue et T -périodique. On étend nos résultats précédents en utilisant la théorie de
Floquet [32]. Bien que l’on ne puisse pas exhiber le trade-off de façon aussi explicite que
pour le cas où p est constant, on montre que le signe de la dérivée ∂γλα,γ peut changer de
façon non-triviale en fonction des valeurs de p(t). En particulier, on illustre numérique-
ment que, en fonction de la période T , la valeur optimale de λα,γ est atteinte à l’intérieur de
l’espace de paramètress, i.e. pour γ ∈ (0, 1) et α > 0.

De façon intéressante, on peut comparer nos résultats mathématiques à des travaux
expérimentaux précédents qui ont essayé de mesurer la fitness de populations de E. coli
dont le taux d’induction et répression de la réponse SOS face aux endommagements de
l’ADN sont manipulés à l’aide de modifications génétiques [92]. Cela permet aux auteurs
d’inférer un paysage de fitness (fitness landscape) qui donne la valeur de λ en fonction
des modifications génétiques réalisées. Ainsi, si on associe notre paramètre de switch α
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à leur paramètre d’induction de réponse SOS (qui fait passer les cellules vulnérables en
cellules tolérantes), et notre paramètre de rétablissement γ à leur paramètre de répression
de réponse SOS (qui permet de revenir à l’état normal lorsque les endommagements de
l’ADN ont été réparés), on peut comparer nos prédictions de λα,γ à leurs paysages de fitness.
Nous discutons sur quelques comportements qualitatifs que nos résultats mathématiques
permettent d’éclaircir.

1.2.4 Chapitre 5 : Changement de régime dans la vitesse de propagation
d’une population de Myxobactéries structuré en taille de clusters

Ce chapitre a été élaboré au cours de l’école de recherche CEMRACS 2022, qui a eu lieu
au CIRM (Marseille) pendant l’été 2022, en collaboration avec Vincent Calvez, Adil El Ab-
douni, Maxime Estavoyer, Florence Hubert, Julien Olivier and Magali Tournus. Ce chapitre
a été soumis à publication dans ESAIM: Proceedings and Surveys.

Nous nous intéressons au phénomène de la propagation spatiale d’une population de bac-
téries structurée en taille et position spatiale. Bien qu’il s’agisse cette fois-ci de Myxococcus
xanthus, bactérie terrestre prédatrice d’E. coli dont le comportement et très diffèrent de
celui de sa proie, l’étude vise pareillement à analyser l’effet de la structure en taille sous-
jacente sur le comportement macroscopique de la population. Cette fois ce n’est pas le taux
de croissance que l’on regarde comme indicateur de fitness de la population, mais la vitesse
de sa propagation spatiale. En effet, en présence des proies, M. xanthus se déplace de façon
collective à travers des fronts de propagation constitués de clusters de bactéries de diverses
tailles, pouvant contenir d’une bactérie isolée à plusieurs milliers de bactéries chimiquement
recollées les unes aux autres. De façon intéressante, cet attroupement a un effet synergique
et le coefficient de diffusion spatiale des clusters est plus élevé que celui des bactéries isolées.

On considère un modèle minimal de réaction-diffusion avec une structure de taille très
simplifiée, consistant en clusters de 1 ou 2 bactéries seulement. Pour i ∈ {1, 2}, on note
pi(x, t) la densité de nombre de clusters de i bactéries à la position spatiale x ∈ R au temps
t ≥ 0. On note aussi p = p1 + 2p2 la densité du nombre total de bactéries. On se place dans
l’échelle de grandes populations et on suppose toutes les cellules bien mélangées, de façon
que p1 et p2 sont solutions du système de réaction-diffusion

∂tp1 = θ1∆p1 − τ1p21 + 2τ2p2 + αp1

(
1− p

K

)
, (5.1)

∂tp2 = θ2∆p2 +
τ1
2
p21 − τ2p2, (5.2)

Le premier terme de (5.1) et (5.2) est un terme de diffusion, décrivant le mouvement
spatial aléatoire de bactéries isolées et de paires de bactéries. On suppose que θ2 > θ1, i.e.
que les clusters se diffusent plus rapidement que les bactéries isolées. Le terme non linéaire
τ1p

2
1 représente la coagulation de 2 bactéries isolées qui deviennent 1 cluster de 2 bactéries

à taux τ1 > 0. De même, le terme τ2p2 corresponds à la fragmentation de 1 cluster de 2
bactéries qui devient 2 bactéries individuelles à taux τ2 > 0. On suppose que seules les
bactéries isolées peuvent se diviser. On suppose que cette croissance est de type logistique,
avec un taux de croissance α > 0 et une capacité de charge K > 0. Ainsi, le système
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(5.1)-(5.2) est une extension de l’Équation de Fisher-KPP [54, 90]. En particulier, on
peut obtenir Fisher-KPP en faisant τ2 = 0, ce qui découple les deux équations.

Nous explorons numériquement le comportement en temps long du modèle en fonction
des valeurs des taux de coagulation τ1 et fragmentation τ2 de clusters, et du rapport entre
les coefficient de diffusion de clusters θ2/θ1. Les simulations numériques de ce système nous
permettent de conclure l’existence de solutions d’onde pour toutes les valeurs positives de
paramètres. De plus, nous observons deux régimes distincts séparés par un seuil constant
θ∗ pour le rapport θ2/θ1. Lorsque θ2/θ1 < θ∗, le front de propagation consiste en ondes dites
"tirées". Cela signifie que la vitesse de propagation est égale à la vitesse du modèle Fisher-
KPP. Dans ce cas, la propagation de la population est limitée par la motilité des bactéries
isolées, de sorte que l’attroupement n’affecte pas en réalité la vitesse. Cependant, lorsque
θ2/θ1 > θ∗, le front de propagation consiste en ondes dites "poussées". Dans ce cas, la
vitesse de propagation est strictement supérieure à la vitesse de Fisher-KPP, grâce à l’effet
non négligeable de la non-linéarité introduite par le terme de coagulation. Autrement dit,
nous concluons que lorsque la motilité des clusters est suffisamment grande par rapport à la
motilité des bactéries isolées, le comportement collectif de M. xanthus permet à l’ensemble
de la population de se propager plus rapidement que dans le cas sans clusterisation. Nous
observons également que θ∗ est indépendant des taux de coagulation et de fragmentation.
En particulier, nous pouvons réduire le système au cas τ1, τ2 → +∞, ce qui nous donne
une équation scalaire que nous étudions numériquement, et dont nous donnons quelques
heuristiques pour son étude analytique.

Ensuite nous nous intéressons à un modèle plus général, à structure de taille continue,
apparenté au modèles de population structurée formulés aux chapitres précédents. On
étend le système (5.1)-(5.2) à un modèle général de Diffusion-Croissance-Fragmentation-
Coagulation décrit par (5.3)-(5.5) ci-dessous, où ρ(t, x, z) est la densité de nombre de clus-
ters de taille z ∈ [0, zmax] en position spatiale x ∈ R au temps t ≥ 0. On modélise ρ comme
la solution du système intégro-différentiel suivant

∂tρ(t, x, z) = ∂xx [θ(z)ρ(t, x, z)]− ∂z [v(z,m)ρ(t, x, z)] + F [ρ](t, x, z) + G[ρ](t, x, z), (5.3)

où m(t, x) =
∫ zmax

0
z′ρ(t, x, z′) dz′ est la densité locale du nombre de bactéries, v(z,m) ≥ 0

est la vitesse de croissance de clusters de taille z quand le nombre local de bactéries alentour
est m, F l’opérateur de fragmentation défini par

F [ρ](t, x, z) = 2

∫ zmax

z

β(z′)k(z′, z)ρ(t, x, z′) dz′ − β(z)ρ(t, x, z), (5.4)

et G l’opérateur de coagulation défini par

G[ρ](t, x, z) = 1

2

∫ z

0

γ(z − z′, z′)ρ(t, x, z − z′)ρ(t, x, z′) dz′

− ρ(t, x, z)
∫ zmax−z

0

γ(z′, z)ρ(t, x, z′)dz′. (5.5)

L’existence de fronts de propagation dans des modèles de populations structurés a été
étudiée dans des cas particuliers [49, 21, 2, 67]. L’étude numérique du cas avec un opéra-
teur de coagulation est nouveau. Nos expériences numériques montrent que la solution du
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système integro-différentiel admet aussi des solutions en forme d’onde. De plus, comme
pour le modèle à 2 types, on remarque l’existence d’un seuil pour le coefficient de diffusion
à partir duquel la vélocité c est plus grandd que la vélocité de Fisher-KPP.

On conclut le chapitre avec des expériences numériques d’une extension du modèle à 2
types où l’on rajoute proie dans le milieu. Au contact de leur proie, les bactéries peuvent
switcher vers un état dit d’alimentation, où elles consomment la proie en arrêtant de se
diffuser. L’idée est de récupérer, au moins de façon qualitative, les données d’avancement
du front de propagation de M. xanthus sur une gouttelette de E. coli (proie), où l’on voit
la décélération du front de propagation au contact de E. coli. Nos simulations montrent
un accord qualitatif avec les expériences biologiques, ce qui permet de valider notre modèle
très simplifié. Ainsi, nous concluons que la sociabilité et la forte diffusion des clusters de M.
xanthus jouent un rôle prépondérant dans la vitesse de prédation et de propagation spatiale
de la population.

1.2.5 Conclusion générale et perspectives
La discussion spécifique de ces résultats est donnée en anglais à la fin de chaque chapitre.
Nous nous permettons de donner ici une conclusion synoptique à la lumière de ces quatre
parties, ainsi que quelques perspectives ouvertes par ces travaux.

Du point de vue de la biologie, les résultats de cette thèse illustrent mathématiquement et
numériquement l’effet positif que l’hétérogénéité cellulaire peut avoir sur diverses mesures
de la fitness d’une population bactérienne, malgré les effets apparemment négatifs que cela
peut avoir à l’échelle microscopique. Ainsi, la diminution du taux de division induite par
la réponse SOS mise en évidence par inférence statistique dans le Chapitre 2, permettrait
toutefois d’assurer un meilleur rendement malthusien si les cellules plus âgées deviennent
en même temps tolérantes, comme les résultats du Chapitre 4 le montrent. De même, les
résultats du Chapitre 5 montrent que la diffusion accélérée des agglomérés cellulaires peut
accélérer la vitesse de propagation de la population globale, même si ce n’est que les cellules
isolées qui sont capables de se nourrir et de se reproduire.

On voit néanmoins que ces effets sont souvent soumis à des trade-off associant le risque
lié aux stratégies d’hétérogénéité, comme la probabilité de mourir p de cellules à divi-
sion rapide du Chapitre 4. Ces trade-offs font émerger de résultats intéressants, et sug-
gèrent des éléments de preuve de l’intérêt évolutif de l’apparition de telles stratégies. Ainsi,
l’émergence de la filamentation chez E. coli peut être expliquée en partie par l’adaptation
conjointe des taux d’induction et de répression de la réponse SOS (α,γ) et des taux de divi-
sion (β0, β1) dans un environnement fluctuant.

De plus, les résultats mathématiques du Chapitre 4 suggèrent que certaines modifica-
tions de la réponse SOS (comme celles qui peuvent être provoquées par certaines molécules
antibiotiques) peuvent diminuer la probabilité d’établissement de microcolonies, mais aug-
menter le taux de croissance asymptotique de la population. Cela soulève des questions
méthodologiques sur la comparaison des résultats expérimentales où la mesure d’intérêt est
la survie de la colonie et d’autres où la mesure d’intérêt est le taux de croissance de la pop-
ulation. Qui plus est, ces différences prennent source dans l’hétérogénéité sous-jacente et
souvent mal ou pas prise en compte. Ainsi, des procédés de modélisation donnée-centrés qui
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prennent en compte explicitement l’hétérogénéité face au traitement antibiotique et qui per-
mettent de confronter données single-cell et de population, tel que l’on présente au Chapitre
2, deviennent de cruciale importance.

Cependant, on remarque la présence d’une hétérogénéité supplémentaire, qui n’est pas
entièrement comprise par le niveau d’intensité SOS. Il serait très intéressant de modéliser
cette hétérogénéité supplémentaire avec une approche à effets mixtes. Des avancées récentes
de cette théorie pour l’étendre aux flots stochastiques, d’un côté, et aux lignées cellulaires,
de l’autre, pourraient être adaptées à notre cas.

Du point de vue des outils mathématiques, nous donnons dans le Chapitre 3 notre con-
tribution majeure. L’approche probabiliste choisie permet de contourner les problèmes liés
au manque de compacité qui apparaissent dans l’estimation de bornes de hypocoercivité
dans des approches plus analytiques. Cela nous permet de montrer des nouveaux résultats
que, même pour le cas adder d’origine, n’étaient pas accessibles précédemment. De même,
on contribue avec quelques idées originales pour la construction des éléments propres de
l’opérateur Q associé (en absence d’hypothèse d’auto-similarité pour le noyau de fragmen-
tation, par exemple) et pour la construction trajectorielle de la condition de Doeblin qui
peuvent être applicables à d’autres contextes.

Pour conclure, nous avons traité la question de l’hétérogénité cellulaire sous une ap-
proche coarse-grained : les mécanismes derrière la variabilité intracellulaire ont été réduits
en taux de division, types cellulaires et traits continus dont l’interprétation biomoléculaire
est plutôt diffuse. Bien que cela nous permette déjà de lier les dynamiques au niveau de
cellules individuelles et au niveau de population, une perspective intéressante est d’obtenir
l’hétérogénéité cellulaire comme résultat d’une hétérogénéité métabolique, ce qui permet-
trait de lier les dynamiques biomoléculaires aux dynamiques de population. La régulation
métabolique du contrôle de la taille cellulaire (pour expliquer le modèle adder, particulière-
ment) est un sujet actif de recherche en biologie, mais l’impact de ces mécanismes sur la
croissance de populations est loin d’être clair. Ainsi, la question du contrôle de la taille et
de l’hétérogénéité bactérienne constitue un champ d’application idéal pour des méthodes à
l’interface de l’analyse et des probabilités. Qui plus est, l’avancement des techniques expéri-
mentales et la richesse de données permettent la confrontation des résultats théoriques avec
des résultats empiriques dans un niveau comparable à celui de la physique, ainsi que des
questionnements sur le long terme et les adaptations évolutives. Beaucoup de biologistes
et physiciens s’accordent à dire que le développement de la microbiologie des 80 dernières
années est comparable à celui de l’astronomie et la physique à l’aube du XVIIe siècle [84].
De même, le besoin d’outils mathématiques adaptés ne devrait qu’augmenter, d’où la valeur
des approches rigoureuses et robustes qui aident décortiquer la complexité du caractère
intrinsèquement multi-échelle de ces phénomènes.
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Chapter 1

General introduction

"[W]hile I have sought to shew
the naturalist how a few
mathematical concepts and
dynamical principles may help
and guide him, I have tried to
shew the mathematician a field
for his labour,–a field which few
have entered and no man has
explored. Here may be found
homely problems, such as often
tax the highest skill of the
mathematician, and reward his
ingenuity all the more for their
trivial associations and outward
semblance of simplicity."

D’Arcy Thompson (On Growth
and Form, 1917)

1.1 Brief review of the context
This thesis arises from a close collaboration, based on observations made by Sebastián
Jaramillo and James Broughton in the context of their doctoral theses under the supervi-
sion of Meriem El Karoui at the University of Edinburgh. They observed that during the
exposure of Escherichia coli bacteria to a low concentration of ciprofloxacin (an antibiotic
that causes double-strand breaks in DNA), the individual stress response is significantly
variable from one cell to another, although they are isogenic (with the same genetic mate-
rial) and grow under the same conditions.

Within E. coli, the detection of DNA damage triggers a complex molecular response
called the SOS response, inducing the repair of double-strand breaks. The intensity of this
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response can be monitored over time using fluorescent markers. These intensity measure-
ments have revealed significant heterogeneity in the SOS response among individual cells,
ranging from very weak to very strong, with significant impacts on their morphology and
growth. Indeed, the SOS response induces the expression of proteins that cause cell division
to stop without arresting cell growth. Consequently, the SOS heterogeneity is translated
into size heterogeneity, characterised by the emergence of a subpopulation of abnormally
long filamentous bacteria. Furthermore, by arresting their division, these bacteria may
be capable of persisting after stopping the antibiotic treatment, making this phenomenon
crucial for understanding antibiotic resistance mechanisms—a major topic in contemporary
biomedical research and a growing concern in public health.

Typically, during population growth measurements, it is the increase of the population
total mass that is observed, rather than the number of cells. Thus, filaments, although few in
number (5-10% of the total population depending on the growth medium [82]), contribute
significantly to the observed population growth, but less so to the total number of cells. To
account for these different behaviours, it is essential to understand the population’s evolution
at the individual cell level. To achieve this, a fundamental understanding of the cell division
mechanisms controlling is necessary. It then falls to the mathematician to translate such
mechanisms into division rates dependent on the traits (size, age, molecular constitution,
etc.) of the bacterium. This problem fits into a broader and active field, propelled by the
explosion in the development of single-cell microscopy techniques, prompting biologists to
ask themselves a natural question: how do these new single-cell observations align with
known macroscopic behaviours?

This question, however, predates the advent of these new microscopy techniques. Al-
ready in the early 20th century, in his now-famous work On Growth and Form, Scottish
biologist D’Arcy Thompson delves into the emergence of morphological diversity in liv-
ing organisms based on microscopic mechanisms. He attempted to explain, through simple
mathematical models, how the growth rate shapes the form of cells, tissues, organs, and
populations, subtly connecting these different scales. He highlighted one of the main chal-
lenges in comparing microscopic and macroscopic data, pointing out what we would now
call an age bias:

We must be very careful, however, how we interpret such a Table [showing
the slowdown of human growth through age]; for it records the character of a
population, and we are apt to read in it the life-history of the individual. The
two things are not necessarily the same. That a man grows less as he grows older
all old men know; but it may also be the case, and our Table may indicate it, that
the short men live longer than the tall. ([137] p.92)

The observation of bacterial growth being much more elusive than the observation of
human growth, microbiologists had to wait until the development of microscopy techniques
before posing similar questions. Variability in cell proliferation has been highlighted since
at least the 1932 paper by Kelly and Rahn [88] on E. areogenes and B. cereus. In this work,
they manually tracked over 1700 individuals for 4 generations, demonstrating a consider-
able variation in their rate of fission. They noted the age dependence of the distribution of
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division times, and Rahn himself suggested a microscopic model to explain this variability.
From this model, he derived a division rate resulting from the convolution of exponential
laws. David Kendall took interest in the topic (see [89] and references cited therein) and,
formalising Rahn’s model as a Markov process, attempted to estimate the parameter values
of the division rate using the coefficient of variation (the ratio of the standard deviation to
the mean). Later, a general theory of branching stochastic processes with age-dependent
division rates was developed by Bellman and Harris in 1948 and 1952 [13].

The subsequent developments are well-known, and the renowned Bellman-Harris pro-
cess became a classic tool. Nevertheless, the derivation of links between such stochastic
models and equivalent population models, parameter inference, and, in particular, the quan-
titative understanding of the age bias that must be considered when transitioning between
them, remain major subjects in both mathematics and biology. Only recently has the de-
velopment of modern probability allowed the rigorous formulation of stochastic individual-
based models in age-structured populations [57, 140] and the analysis of the sampling of
individual lineages in the genealogical tree of a population [105]. On the biological side,
the recent development of microfluidic techniques has enabled the capture, manipulation,
and tracking of very small bacterial samples, from small populations to individual cells,
and for increasingly extended periods [142, 72, 116]. A clear example is the experimental
setup known as the mother machine [142], with which J. Broughton, S. Jaramillo, and M.
El Karoui have obtained data that will be analysed (J. Broughton’s doctoral work, not yet
published at this date).

1.2 Main results and thesis synopsis
This thesis consists of four chapters following this introduction. The summarised results
below share the common goal of contributing to the understanding of the quantitative impact
of intercellular heterogeneity on the macroscopic observables of a cell population under
stress. By combining a detailed observation of single-cell data in close collaboration with
the biologists from El Karoui Lab, along with the use of tools from the theory of measure-
valued stochastic processes, semigroup theory, and PDE analysis, this interdisciplinary
approach aims to enhance our understanding of complex dynamics within cell populations
across various scales.

1.2.1 Chapter 2: Modelling and calibration of the "adder" model from
individual cells under genotoxic stress data

In the second chapter, we construct a model of the growth of a population of E. coli bacteria
under the influence of antibiotic stress based on the data collected by James Broughton,
Sebastián Jaramillo, and Meriem El Karoui [82, 24], using the microfluidic setup known
as mother machine (MM) [142, 116], depicted in Fig. 1.1. In this device, isolated bacte-
ria are trapped in narrow cavities that allow tracking of individual cell lineages over time
(Fig. 1.1A). The produced data have high temporal resolution and sampling. Indeed, a
single device can have around 104 cavities, enabling the acquisition of a large number of
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independent lineages developing under the same conditions for very extended periods, thus
realising what could be considered as real Monte Carlo experiments. Image acquisitions are
performed at regular time intervals, allowing the tracking of the size and fluorescence level
of individual cells over time (Fig. 1.1B-C).

Figure 1.1: The mother machine (MM) A. Diagram representing the parallel cavities of the mother
machine. B. Kymograph composed of microscopy images acquired by J. Broughton in a cavity (for
example, the one highlighted in blue in panel A). Acquisitions are made at equidistant intervals of
length ∆t = 5 minutes. At each instant, fluorescence measuring the intensity of the SOS response
is measured. The mother lineage corresponds to the trajectory of the cell at the bottom of the device
(highlighted in pink). C. Example of size and fluorescence measured from the mother lineage in the
kymograph.

Starting from an original analysis of these data, we propose a stochastic model that
incorporates sources of variability impacting the growth dynamics. First, we consider a
population of cells growing in absence of stress, where the division dynamics are described
by the "adder" model [133] of size control. Under this model, the division time of each
bacterium is decided based on the size a it has added since its birth, independently of its
initial size, i.e.,

P(Added size until division ≥ a) = S(a) = exp

(
−
∫ a

0

B(s)ds

)
, (1.1)

where B is the division rate that we will seek to estimate. The surprising accuracy of
this simple phenomenological model in predicting the size distributions of E. coli has been
demonstrated on several occasions and under various conditions over the last decade [129,
28]. With this simple rule, it has been possible to explain stationary size distributions and
size-at-division distributions that more classical models structured only by size or age were
unable to recover [133, 46].

We denote by a > 0 the size added since birth and y > 0 the current size of the bacterium.
We formulate the adder model as a piecewise-deterministic measure-valued stochastic pro-
cess Zt supported in R2

+ (structured in age a and size y). We consider that, between two
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random divisions, each cell grows at an exponential rate λ > 0, common for the entire pop-
ulation. Following the approach introduced by [57, 140], using a pathwise representation
of Zt with respect to a Poisson point measure, we show that for any function f ∈ C1,1

b (R2
+),

Zt can be written as a semimartingale of the form

⟨Zt, f⟩
def
=

∫
R2
+

f(x)Zt(dx) = ⟨Z0, f⟩+
∫ t

0

⟨Zs,Qf⟩ ds+ M f
t , (1.2)

where M f
t is a square-integrable martingale, and the infinitesimal generator Q is given for

any f ∈ C1,1
b (R2

+) by

Qf(a, y) = λy (∂a + ∂y) f(a, y) + λyB(a)

(
2

∫ 1

0

f(0, ρy)F (ρ)dρ− f(a, y)
)
, (1.3)

where F is a probability kernel supported in [0, 1], describing a self-similar division, i.e.,
whose law depends only on the proportion between the size of the mother and its daughter,
and not on the absolute size of the mother.

Statistical inference of division rates has been extensively explored in other related mod-
els and through complementary approaches (see, for instance, Doumic and Hoffmann’s re-
view chapter on the subject [46]). Noteworthy works include Osella et al. [117], Doumic
et al. [47], Hoffmann and Olivier [78], and Van Heerden et al. [141]. In these studies,
division rates are inferred from single-cell observations of MM using non-parametric es-
timators. Regarding the estimation of B in our case, as pointed out by [46], the adder
hypothesis reduces the size-and-age structured model to a simple renewal model, to which
classical survival analysis techniques can be applied (see, for example, the book by [135]).
For instance, if we have an i.i.d. sample (Ai)i∈J1,NK with survival function 1 − S, we can
define the classical non-parametric estimator

B̂(a) =

∑N
i=1Kh(a− Ai)∑N

i=1 1Ai≤a

,

where Kh = K(a/h)/h, with K being a suitable kernel (e.g., Gaussian) and h > 0 be-
ing a given bandwidth. Proposition 4.1 by Doumic and Hoffmann [46] shows that if B is
a α-Hölder continuous function, the optimal value of h yields a convergence rate of order
N−α/(2α+1) of B̂ towardsB. In our case, we seek a statistical framework that not only allows
the estimation of B from the data, but which is also capable of quantifying the effect of con-
tinuous covariates (fluorescence intensity of the SOS response) and qualitative covariates
(culture medium), that will be added in the second part of the chapter. Similarly, we aim
for a framework that facilitates the prediction (extrapolation) of the division rate, which
can be reused for simulations based on the fitted model. These reasons naturally led us to
a parametric statistical framework. From a biological perspective, this approach enables
us to provide quantitative and biologically interpretable results when comparing different
experimental setups. Furthermore, we provide numerical evidence that, for the proposed
model, maximum likelihood maximization is numerically tractable. This may also allow rel-
evant extensions within our parametric framework, such as the inclusion of random effects
(frailty models [79]), which we discuss in the chapter’s conclusion.
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Finally, the richness of data acquired in El Karoui’s laboratory (both in MM and in
population, for the same strains and under the same conditions) allows us to quantify the
difference between population and single-cell data. Thus, under a stationarity assumption,
demonstrated in Chapter 3, we compare single-cell data with population data acquired in
the absence of stress. We highlight a systematic shift that may be due to an exogenous
effect limiting the growth of E. coli in MM compared to population measurements.

Secondly, we study the growth dynamics under the action of stress. We couple this model
with a stochastic diffusion model representing the intensity of the stress response (SOS
response) as a continuous variable (Xt)t≥0 evolving over time. In particular, we consider an
Ornstein-Uhlenbeck model{

dXt = −θc(t)
(
µc(t) −Xt

)
dt+ ζ2c(t)dBt

c(t) = 1[τ0,τ1[(t)

where [τ0, τ1[ is the interval of antibiotic treatment, the parameters {θi, µi, ζ
2
i }i∈{0,1} model

the action of the antibiotic on the SOS response dynamics, and Bt is a standard Brownian
motion. Motivated by the experimental measurements of Xt by fluorescence marking, we
construct a new branching model describing the effect of this variable on the growth and
division dynamics modelled in the first place. In this regard, we consider division rates of
the form B(a, x) depending on the added size and the value Xt = x at the time of division.

Moreover, the observations show the presence of asymmetric divisions, dependent on
the size y of the mother, which we model with a kernel k(y, ·) that is no longer self-similar.
Indeed, when E. coli becomes long, an intracellular regulatory system acts to define the
position of cell division, which is not necessarily at the middle of the cell but can also occur
peripherally. In light of the data, we propose to model k(y, ·) as a uniform mixture of N(y)
Beta distributions, whereN(y) ∈ N represents the number of positions where division could
occur in a bacterium of size y. It is thus written as

k(y, ρ) =
1

N(y)

N(y)∑
n=1

FN(y)
n (ρ) ,

where for any N > 1, {FN
n , n ∈ J1, NK} is a family of N Beta distribution densities, and

their parameters are estimated by maximum likelihood from the data. Thus, the new process
is generated at any time t ≥ 0 by the non-homogeneous generator

Q̃(t)f(a, y, x) =− θc(t)(µc(t) − x)∂xf(a, y, x) +
ζ2c(t)
2
∂xxf(a, y, x)

+ λy (∂a + ∂y) f(a, y, x) + λyB(a, x)

(∫ 1

0

f(0, ρy, x)k(y, ρ)dρ− f(a, y, x)
)
.

In particular, we use a flexible parametric model based on the generalised Gamma distribu-
tion [131], allowing the generation of functions B(a, x) with very broad biological proper-
ties and interpretations. This will allow us to quantify the perturbative effect of the stress
response on the size control mechanisms in E. coli. Moreover, we highlight that the hetero-
geneity of the SOS response can bias the observed adder division rate. This explains the
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apparent emergence of a loss of control regime, where the division rate would decrease for
longer bacteria.

1.2.2 Chapter 3: Exponential ergodicity of a general model structured
in size and age

The work of this chapter was published in the form of an article in Acta Applicandae Math-
ematicae [103].

The key assumption of stationarity, crucial for comparing individual and population mea-
sures, is demonstrated in the third chapter. This is done for a more general version of the
piecewise deterministic size-and age-structured model introduced in Chapter 2. We study
the long-term behaviour of the transition semigroup Mt : C

1,1
b (R2

+) → C1,1
b (R2

+) associated
with the process Zt defined by

Mtf(a, y)
def
= Ea,y [⟨Zt, f⟩] = f(a, y) +

∫ t

0

Ms (Qf) (a, y) ds

using the probabilistic method known as Harris’ theorem [71, 69, 10, 14]. This method
follows the theory initiated by Doeblin [40] and widely developed and popularised by Meyn
and Tweedie [112]. To achieve this, we first establish estimates concerning the eigenele-
ments of the infinitesimal generatorQ using analytical methods based on the Krein-Rutman
theorem, following ideas developed notably by B. Perthame [119] for transport equations.

We consider a more general model than the adder, characterised by a new generator Q
defined for any f ∈ C1,1

b (R2
+) by

Qf(a, y) = g(a, y)⊤∇f(a, y) + β(a, y)

(∫ ∞

0

f(0, z)k(a, y, z) dz − f(a, y)
)
,

where g(a, y) = (g1(a, y), g2(a, y)) contains the aging rate g1(a, y) and the elongation rate
g2(a, y) of an individual of age a and size y, β(a, y) is the division rate of an individual of
age a and size y, and k(a, y, z) is a density kernel describing the sizes z of the offspring of
an individual of age a and size y at the time of its division. Thus, special cases include the
classic adder model, given by g1(a, y) = g2(a, y) = λy and k(a, y, z) = k(y, z) = 2

y
F (z/y),

and the adder model with asymmetric division, where the kernel k is given by (1.4).
We use the version of the ergodic theorem of Harris formulated under the name of the

Uniform V -Ergodicity Theorem by Meyn and Tweedie [111] as follows:

Theorem 1.2.1 (Theorem 6.1 of [111]). Let (Xt)t be a right-continuous Markov process
taking values in a locally compact Polish space E equipped with its Borel B(E), and let A
be the infinitesimal generator of X. Let Pt be the associated transition semigroup. If the
following two conditions are satisfied:

(H1) Minorization condition (also known as the Doeblin or small set condition for com-
pact sets ofE). Any compact set in E is small for a skeleton ofX, i.e., for any compact
set K ⊂ E, there exists a discrete probability measure µ = (µn)n∈N on N and a ∆ > 0
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such that there exists a non-trivial measure ν (which may depend on ∆ and µ) on
B(E) such that for all x ∈ K , the lower bound holds:

⟨µ, δxP·f⟩ =
∑
n∈N

µnPn∆f(x) ≥ ⟨ν, f⟩ .

(H2) Foster-Lyapunov condition
There exists a coercive function V , i.e., V (x)→ +∞ as ||x|| → +∞, such that V (x) ≥
1 for all x, and constants c > 0, d <∞ such that

AV (x) ≤ −cV (x) + d ∀x ∈ E,

Then, there exists a unique non-trivial probability measure π and constants C, ω > 0 such
that for all x ∈ E and t ≥ 0

||δxPt − π||V ≤ CV (x) exp(−ωt), (1.4)

where ||·||V is a norm defined by

||µ||V := sup
g:||g||≤V

|⟨µ, g⟩|

In particular, ||µ||1 = ||µ||TV is the total variation norm.

However, the semigroup generated by Q is not necessarily conservative. Although
Bansaye et al. recently established in [10] a result extending the Harris theorem to non-
conservative semigroups, it turns out that the conditions known as mass ratio control (as-
sumptions (A3) and (A4) ibidem) are quite challenging to demonstrate in the case of two
continuous dimensions (size and age). These conditions are related to the irreducibility of
the process and are associated with the existence of a coupling time from which trajectories
arising from any initial condition mix (see, for example, the discussion in [34]). The diffi-
culty in our case is to construct such trajectories because the deterministic flow determined
by g can only explore R2

+ through one-dimensional trajectories. Moreover, the transitions
are non-local and degenerate: although the sizes of daughter cells admit a density k(a, y, ·),
the age of newborn cells is deterministically set to 0. The small set condition established by
(H1) allows us to overcome this difficulty because, instead of requiring a uniform coupling
time for any initial condition, it allows us to take a time average with respect to the dis-
crete sampling law µ. Readers familiar with other now more classical versions of the Harris
theorem can refer to the discussion in Chapter 3, where we comment on these equivalent
versions.

So, to apply this theorem, we must first construct a good conservative semigroup, which
then allows us to deduce the ergodic behaviour of Mt. To do this, we first show that under
the assumptions 3.3.3, there exists a unique eigenfunction h : R2 → R+ and eigenvalue
Λ > 0 satisfying the eigenvalue problem

Qh = Λh. (1.5)
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This allows us to construct an auxiliary process with generator

Af(a, y) = g(a, y)⊤∇f(a, y) + β(a, y)

(∫ ∞

0

(f(0, z)− f(a, y)) h(0, z)
h(a, y)

k(a, y, z)dz

)
whose associated semigroup Pt is Markovian and conservative (Pt1 ≡ 1) and can thus be
studied using the techniques of Meyn and Tweedie. Then, we recover the semigroup asso-
ciated with the original process via an h-transform of Doob:

Mtf(a, y) = eΛth(a, y)Pt

(
f

h

)
(a, y).

This finally allows us to obtain the main result of the chapter:

Theorem 1.2.2 (Exponential Ergodicity). Under Assumptions 3.3.3 and if condition (H2)
is satisfied for a coercive function V : R2

+ → R+, then there exists a unique probability
measure π and constants C, ω > 0 such that for any initial condition µ0 ∈Mp(R2

+)

||e−Λtµ0Mt − ⟨µ0, h⟩ π||V ≤ C ⟨µ0, V ⟩ e−ωt. (1.6)

The proof ideas are as follows:

1. Existence of h

a) We begin by reducing the problem (1.5) to a scalar problem using the renewal
property in a. In Lemma 4.4.2, we show that (Λ, h) is a solution to (1.5) (and a
certain boundary condition) with Λ > 0 and h ∈ W 1,∞

loc (R2
+) if and only if

h(a, y) =

∫ ∞

0

h(0, z)KΛ(a, y, z)dz

for a certain kernel KΛ : R3
+ → R+ whose spectral properties determine those of

Q. We then consider the operator Gλ defined for any f ∈ C1(R+) by

Gλf(y) =
∫ ∞

0

f(z)Kλ(0, y, z)dz ∀y > 0. (1.7)

b) We then demonstrate the existence of Λ > 0 and h ∈ W 1,∞
loc (R2

+) solutions to
(1.5), adapting a classical scheme built upon the Krein-Rutman theorem, as fol-
lows:

i. We construct a truncated version of Gλ that is compact. We then apply the
Krein-Rutman theorem to show that for any λ ≥ 0, the truncated operator
has a unique eigenvalue µλ ≥ 0 and eigenfunction hλ ≥ 0, up to normalisa-
tion.
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ii. We show that there exists a unique λ0 > 0 such that µλ0 = 1. Moreover, we
demonstrate that the value of λ0 is uniformly bounded for any truncation of
Gλ.

iii. We take the limit and show that the limit eigenpairs (λ0, hλ0) of the family
of compact truncations of Gλ are indeed solutions to the eigenvalue problem.

2. Proof of the Doeblin condition (H1)

Conditioning on the division times, we express the action of the semigroup Pt as the
mild solution to a recursive equation (Duhamel’s formula (3.39)). Then, for any mea-
surable and bounded function f , we can lower bound Ptf(a, y) by iteratively applying
the formula and retaining the terms that we can control under the assumptions 3.3.3.
The proof essentially involves estimating lower bounds for these terms along trajec-
tories originating from a given compact set.

We conclude the chapter with the application to the adder model where Q is given by
(1.3), for which we demonstrate exponential convergence to its stationary measure. In
particular, for the adder model with exponential growth, the eigenelements are explicit:
h(a, y) = y and Λ = λ (the elongation rate), and the Lyapunov condition (H2) is satisfied by
V (a, y) = y−1+y. The general result also extends to cases where growth is not exponential
or divisions are not symmetric. This set of results provides answers to open questions posed
by the analysis of Gabriel and Martin [62].

1.2.3 Chapter 4 : Trade-offs in a bacterial proliferation model under
stress

In the fourth chapter, we aim to incorporate a key element into the analysis deliberately
omitted in our earlier chapters: the presence of cell death. Even at assumed sub-lethal
doses of ciprofloxacin, a non-negligible number of bacteria completely arrest their growth
and division. However, the induction of the SOS response is expected to play a protective
role. Indeed, our analysis of the data reveals that the SOS response is not only heteroge-
neous among individual cells but also fluctuates significantly during the life of a bacterium,
giving rise to a phenomenon known as phenotypic plasticity. At certain times, randomly
but depending on the environment and the intensity of stress, E. coli can transition from
its normal state of apparent SOS response inactivity to a state of high activity. Thus, in
the presence of antibiotics, bimodal distributions in the SOS response level are observed.
Subsequently, after one or more divisions, the progeny of high SOS bacteria are capable of
returning to the normal state.

In order to improve the phenomenological and quantitative understanding of the evolu-
tionary significance of this plasticity strategy in response to stress, we formulate a minimal
stochastic model that preserves the main elements of the phenomenon. Thus, we maintain
an age structure, while the variability in the SOS response is summarised in two discrete
traits. We consider vulnerable cells (type i = 0), susceptible to death at the time of their
division with a probability p ∈ (0, 1), and tolerant cells (type i = 1), whose division times
are much longer. The division times of both phenotypes are characterised by their division
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rates β0(a) and β1(a). Vulnerable cells can become tolerant at a rate α > 0. In turn, tolerant
cells can only revert to being vulnerable after their division, which happens with a recovery
probability γ ∈ (0, 1). We formalise this dynamics with a measure-valued stochastic process
Zt supported on R+ × {0, 1} such that

Zt(da, di) = Zt(da, {0})δ0(di) + Zt(da, {1})δ1(di)

and which, for any f ∈ C1,·(R+ × {0, 1}) and t ≥ 0, has the semimartingale decomposition∫
(f(a, 0)Zt(da, {0}) + f(a, 1)Zt(da, {1}))

=

∫
(f(a, 0)Z0(da, {0}) + f(a, 1)Z0(da, {1})) (1.8)

+

∫ t

0

∫
(Qf(a, 0)Zs(da, {0}) +Qf(a, 1)Zs(da, {1}))ds+Mf

t

whereMf
t is a square-integrable martingale, and the generator Q is defined by

Qf(a, i) = ∂af(a, i) + (1− i)α(f(a, 1)− f(a, 0))− βi(a)f(a, i)
+ 2(1− i)(1− p)βi(a)f(0, 0) + 2iβi(a)(γf(0, 0) + (1− γ)f(0, 1))

(1.9)

We are interested in the long-term behaviour of Zt. Firstly, we highlight an explicit
trade-off between the phenotypic switching rate and the probability of recreating vulnerable
individuals, which depends on the stress level p. If we denote λα,γ the exponential growth
rate of the population and πα,γ

i the extinction probability of the population from an individual
cell of age 0 and type i, we show

Théorème 5.3.6 and 5.4.5. Under assumptions 4.2.1, we have

λα,γ > 0 ⇐⇒ πα,γ
0 , πα,γ

1 < 1 ⇐⇒
{
p ≤ 1

2

}
∪
{
p >

1

2
and γ <

1

2

(
1 +

q

(2p− 1)(1− q)

)}
.

where q =
∫ +∞
0

α exp
(
−
∫ a

0
(α + β0(s))ds

)
da is the probability that a type 0 cell switches to

type 1 before dividing.

Next, we analyse the sensitivities of λα,γ and πα,γ
i to variations in α and γ. In contrast

to the results of Campillo et al. [27], who also investigate the links between the two fitness
measures but for a single-type model structured in size, we show that the presence of pheno-
typic plasticity can break the expected monotonicity between variations in the Malthusian
parameter and the probability of population establishment. Indeed, we demonstrate that
variations in α and γ that decrease the probability of population establishment can increase
the overall population growth rate. This is the main result as follows:

37



CHAPTER 1. GENERAL INTRODUCTION

Théorème 5.5.6. Under assumptions 4.2.1 and 4.2.4, for any α ≥ 0,

∂γπ
α,γ
0 , ∂γπ

α,γ
1 > 0

However, for any α ≥ 0, there exists a critical value p̄ ≤ 1/2 such that for any γ ∈ (0, 1)

∂γλα,γ > 0 ⇐⇒ p < p̄,

∂γλα,γ < 0 ⇐⇒ p > p̄.

This result indicates that only the "extreme strategies" of phenotypic plasticity (γ = 0
or γ = 1) are optimal in the Darwinian sense of maximising λα,γ. In conclusion, we show
that the interest in non-trivial plasticity strategies emerges when the environment (i.e.,
the death probability p) is allowed to fluctuate over time. To do this, we consider the case
where the death probability is a continuous and T -periodic function of time, denoted as
p(t). Thus, we extend our previous results using Floquet theory [32]. Although we cannot
explicitly exhibit the trade-off as in the case of constant p, we show that the sign of the
derivative ∂γλα,γ can change non-trivially depending on the values of p(t). In particular, we
numerically illustrate that, depending on the period T , the optimal value of λα,γ is achieved
inside the parameter space, i.e., for γ ∈ (0, 1) and α > 0.

Interestingly, we can compare our mathematical results to previous experimental work
that attempted to measure the fitness of populations of E. coli by manipulating the rates of
induction and repression of the SOS response to DNA damage through genetic modifications
[92]. This enables the authors to infer a fitness landscape, providing the value of λ as a
function of the genetic modifications made. Thus, if we associate our switch parameter α
with their parameter for inducing the SOS response (which transitions vulnerable cells to
tolerant cells) and our recovery parameter γ with their parameter for repressing the SOS
response (allowing a return to the normal state when DNA damage has been repaired),
we can compare our predictions of λα,γ with their fitness landscapes. We discuss some
qualitative behaviours that our mathematical results can help elucidate.

1.2.4 Chapter 5: Regime shift in the propagation speed of a
size-structured population of Myxobacteria

The work of this chapter was initiated during the summer school CEMRACS 2022 at CIRM
(Marseille), in collaboration with Vincent Calvez, Adil El Abdouni, Maxime Estavoyer, Flo-
rence Hubert, Julien Olivier, and Magali Tournus.

The fifth chapter focuses on the spatial propagation phenomenon of a population of bac-
teria structured in size and spatial position. Although this time it involves Myxococcus
xanthus, a terrestrial bacterium that preys on E. coli and exhibits behaviour quite differ-
ent from its prey, the study aims to analyse the effect of the underlying size structure on
the population’s macroscopic behaviour. This time, the growth rate is not examined as an
indicator of the population’s fitness, but rather the speed of its spatial propagation. In the
presence of prey, M. xanthus moves collectively through propagation fronts composed of
clusters of bacteria of various sizes, ranging from isolated bacteria to several thousand bac-
teria biochemically glued together. Interestingly, this clustering has a synergistic effect,
and the spatial diffusion coefficient of the clusters is higher than that of isolated bacteria.
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We consider a minimal reaction-diffusion model with a highly simplified size structure,
consisting of clusters of only 1 or 2 bacteria. For i ∈ {1, 2}, let pi(x, t) denote the density of
clusters with i bacteria at spatial position x ∈ R at time t ≥ 0. We also denote p = p1+2p2 as
the density of the total number of bacteria. We consider the large population scale, assuming
all cells are well mixed, so that p1 and p2 are solutions of the reaction-diffusion system:

∂tp1 = θ1∆p1 − τ1p21 + 2τ2p2 + αp1

(
1− p

K

)
, (5.1)

∂tp2 = θ2∆p2 +
τ1
2
p21 − τ2p2, (5.2)

The first term in (5.1) and (5.2) is a diffusion term, describing the random spatial move-
ment of isolated bacteria and pairs of bacteria. We assume θ2 > θ1, i.e., clusters diffuse
more rapidly than isolated bacteria. The nonlinear term τ1p

2
1 represents the coagulation of

2 isolated bacteria becoming 1 cluster of 2 bacteria at rate τ1 > 0. Similarly, the term τ2p2
corresponds to the fragmentation of 1 cluster of 2 bacteria becoming 2 individual bacteria
at rate τ2 > 0. We assume that only isolated bacteria can divide. Furthermore, we assume
that this growth is logistic, with a growth rate α > 0 and carrying capacity K > 0. Thus,
the system (5.1)-(5.2) is an extension of the Fisher-KPP Equation [54, 90]. In particular,
Fisher-KPP can be obtained by setting τ2 = 0, which decouples the two equations.

We numerically explore the long-term behaviour of the model based on the values of
the coagulation rates τ1 and fragmentation τ2 of clusters, as well as the ratio between the
diffusion coefficients of clusters θ2/θ1. Numerical simulations of this system allow us to
conclude the existence of wave solutions for all positive parameter values. Furthermore, we
observe two distinct regimes separated by a constant threshold θ∗ for the ratio θ2/θ1.

When θ2/θ1 < θ∗, the propagation front consists of so-called "pulled" waves. This im-
plies that the propagation speed equals the Fisher-KPP model speed. In this case, popula-
tion spread is limited by the motility of isolated bacteria, so the clustering effect does not
significantly affect the speed. However, when θ2/θ1 > θ∗, the propagation front consists of
so-called "pushed" waves. In this case, the propagation speed is strictly greater than the
Fisher-KPP speed, thanks to the non-negligible effect of nonlinearity introduced by the co-
agulation term. In other words, we conclude that when the motility of clusters is sufficiently
high compared to the motility of isolated bacteria, the collective behaviour of M. xanthus
allows the entire population to spread more rapidly than in the asocial case.

We also observe that θ∗ is independent of the coagulation and fragmentation rates. In
particular, we can reduce the system to the case τ1, τ2 → +∞, yielding a scalar equation
that we study numerically, providing some heuristics for its analytical study.

Then, we turn our attention to a more general model with a continuous size structure,
related to the structured population models formulated in the previous chapters. We extend
the system (5.1)-(5.2) to a general model of Diffusion-Growth-Fragmentation-Coagulation
described by (5.3)-(5.5) below, where ρ(t, x, z) is the density of the number of clusters of
size z ∈ [0, zmax] at spatial position x ∈ R and time t ≥ 0. We model ρ as the solution to the
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following integro-differential system:

∂tρ(t, x, z) = ∂xx [θ(z)ρ(t, x, z)]− ∂z [v(z,m)ρ(t, x, z)] + F [ρ](t, x, z) + G[ρ](t, x, z),
(5.3)

where m(t, x) =
∫ zmax

0
z′ρ(t, x, z′) dz′ is the local density of the number of bacteria,

v(z,m) ≥ 0 is the growth rate of clusters of size z when the local number of surround-
ing bacteria is m, F is the fragmentation operator defined by

F [ρ](t, x, z) = 2

∫ zmax

z

β(z′)k(z′, z)ρ(t, x, z′) dz′ − β(z)ρ(t, x, z), (5.4)

and G is the coagulation operator defined by

G[ρ](t, x, z) = 1

2

∫ z

0

γ(z − z′, z′)ρ(t, x, z − z′)ρ(t, x, z′) dz′

− ρ(t, x, z)
∫ zmax−z

0

γ(z′, z)ρ(t, x, z′)dz′. (5.5)

The existence of propagation fronts in models of structured populations has been studied
in various particular cases [49, 21, 2, 67]. The numerical investigation of the case with a
coagulation operator is novel. Thus, our numerical experiments show that the solution of
the integro-differential system also admits wave-like solutions. Moreover, as for the 2-type
model, we observe the existence of a threshold for the diffusion coefficient beyond which the
velocity is greater than the Fisher-KPP velocity.

We conclude the chapter with numerical experiments of an extension of the 2-type model
where prey is added to the environment. Upon contact with their prey, bacteria can switch
to a feeding state, where they consume the prey while ceasing to diffuse. The idea is to cap-
ture, at least qualitatively, the front advancement data of M. xanthus on a E. coli droplet
(prey), where the deceleration of the front upon contact with E. coli is observed. Our simu-
lations show qualitative agreement with biological experiments, validating our highly sim-
plified model. Thus, we conclude that the sociability and strong diffusion of M. xanthus
clusters play a crucial role in the speed of predation and spatial propagation of the popula-
tion.

1.2.5 General conclusion and perspectives
The specific discussion of these results is provided at the end of each chapter. We take the
opportunity to provide here a synoptic conclusion in light of these four parts, as well as
some perspectives opened up by this work.

From a biological perspective, the results of this thesis mathematically and numerically
illustrate the positive effect that cellular heterogeneity can have on various measures of the
fitness of a bacterial population, despite the seemingly negative effects it may have at the
microscopic level. Thus, the decrease in the division rate induced by the SOS response
highlighted by statistical inference in Chapter 2 would, however, ensure better Malthusian
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yield if longer cells become tolerant at the same time, as shown by the results of Chapter
4. Similarly, the results of Chapter 5 show that the accelerated diffusion of cell clusters can
speed up the propagation velocity of the overall population, even if only isolated cells are
capable of feeding and reproducing.

However, it is evident that these effects are often subject to trade-offs involving the risk
associated with heterogeneity strategies, such as the probability of death (p) for rapidly
dividing cells in Chapter 4. These trade-offs yield interesting results and suggest evidence of
the evolutionary advantage of the emergence of such strategies. For instance, the emergence
of filamentation in E. coli can be partly explained by the joint adaptation of the rates of
induction and repression of the SOS response (α, γ) and the division rates (β0, β1) in a
fluctuating environment.

Moreover, the mathematical results from Chapter 4 suggest that certain modifications
of the SOS response, such as those induced by certain antibiotic molecules, can decrease
the probability of microcolony establishment but increase the asymptotic growth rate of the
population. This raises serious methodological questions when comparing experimental re-
sults where the outcome of interest is colony survival, versus others, where the focus is on
the population growth rate. Furthermore, these differences stem from underlying and often
overlooked heterogeneity. Thus, modelling approaches that explicitly consider heterogene-
ity in antibiotic treatment and allow for the comparison of single-cell and population data,
as presented in Chapter 2, become crucial.

Yet, we observe the presence of additional heterogeneity, not entirely captured by the
SOS intensity level. It would be very interesting to model this additional heterogeneity with
a mixed-effects approach. Recent advances in this theory, adapting it to stochastic flows on
one side and cell lineages on the other, could be employed in our case. Thus, our model
could serve as a starting point with versatile laws and tractable likelihoods.

From the perspective of mathematical tools, we provide our major contribution in Chap-
ter 3. The chosen probabilistic approach allows us to overcome issues related to the lack of
compactness that arise in estimating hypocoercivity bounds in more analytical approaches.
This enables us to present new results that, even for the original adder case, were not ac-
cessible previously. Similarly, we contribute with some original ideas for constructing the
eigenfunctions of the associated operatorQ (in the absence of assumptions of self-similarity
for the fragmentation kernel, for example) and for the trajectory construction of the Doeblin
condition that may be applicable in other contexts.

In conclusion, the question of cellular heterogeneity has been treated here in a fundamen-
tally phenomenological manner: the mechanisms behind intracellular variability have been
reduced to division rates, cell types, and continuous traits, whose biomolecular interpreta-
tion is rather diffuse. Although this already allows us to link dynamics at the individual cell
level with population-level dynamics, an interesting perspective is to obtain cellular hetero-
geneity as a result of metabolic heterogeneity. This would allow us to connect biomolecular
dynamics to population dynamics. The metabolic regulation of cell size control (to explain
the adder model, in particular) is an active area of research in biology, but the impact of
these mechanisms on population growth is far from clear. Thus, the question of size control
and bacterial heterogeneity constitutes an ideal application field for methods at the inter-
face of analysis and probability. Moreover, the advancement of experimental techniques
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and the richness of data enable the confrontation of theoretical results with empirical re-
sults on a level comparable to that of physics, as well as inquiries into long-term trends
and evolutionary adaptations. Many biologists and physicists agree that the development
of microbiology over the last 80 years is comparable to that of astronomy and physics at
the dawn of the 17th century [84]. Similarly, the need for suitable mathematical tools is
expected to increase, highlighting the value of rigorous and robust approaches that help
unravel the inherent multiscale complexity of these phenomena.
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Chapter 2

Modelling and Calibration of the

adder model from single-cell data

under DNA stress

2.1 Introduction
The development of high-throughput single-cell imaging techniques, such as the mother
machine (MM) [142, 116] or the dynamic cytometer [72], designed to track multiple single
bacteria over several generations, have allowed a better grasp on the emergence mechanisms
of long-term population trends at the individual scale. In particular, a strong interest has
been given to bacterial size regulation and its effects on population-level growth. The mod-
elling, analysis and statistical calibration of this dynamics, both from phenomenological and
coarse-grained mechanistic approaches, has since attracted the attention of an increasing
number of biologists, physicists and mathematicians [46, 47, 4].

A prototypical case of study is the steady-state growth of E. coli bacteria during the
exponential phase. Whilst recent experiments have brought some consensus to the expo-
nential character of cellular elongation [65], the comprehension of the control of cell division
is still far from being well understood. A number of variables and key checkpoint events
have been proposed as candidates for drivers of cell division (see the reviews [110, 126]
and the references therein). Nonetheless, the simple "adder model", in which individuals
cells divide after adding a constant amount of volume tightly controlled and non correlated
to the cell initial size, has been shown to provide an excellent fit to the size distributions
of E. coli under diverse experimental settings [133], in contrast to purely age-structured
("timer") or purely volume-structured ("sizer") models. Recent works have contributed to
the exploration of the underlying molecular origins of the adder model, and suggest it as
an emergent property of the still unclear coordination of DNA replication, RNA/protein
allocation and protein accumulation [85, 126].

The goodness of fit of the adder with respect to other size control models has been
shown by correlation-based graphic tests [133] and using non-parametric estimators based
on the steady-state solution of the associated PDE (see Doumic and Hoffmann [46] and the
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references therein). The main assumption of this last approach is the stationarity of the cell
size distribution, which allows to consider the observations as independent and identically
distributed realisations of the stationary measure associated to the model. Moreover, the
resolution of the associated inverse problem has been shown to be generally quite difficult
[ibidem].

On the other hand, heterogeneous single-cell data motivates the construction of individual-
based models evolving in time. In general, the formalisation of these processes as measure-
valued stochastic processes, as introduced by [57], allows to rigorously link individual dy-
namics to macroscopic observables via limit theorems, under the assumption of a large pop-
ulation [57, 53]. Non-parametric estimators of the division rate based on this stochastic
approach have been proposed for other models of structured branching populations, for
example with age structure in [68, 78], and with a general Markovian (not necessarily
piece-wise deterministic) structure by [77].

As in the previous case, the main assumption is the ergodicity of the relying process. Of
course, this assumption is no longer valid under out-of-equilibrium dynamics, such as during
the adaptation to antibiotics, which corresponds to the data we will analyse, acquired by
James Broughton and Meriem El Karoui at the University of Edinburgh, and that will be
described in detail in the following paragraphs. Based on these observations, we introduce in
Section 2.2 a statistical framework based on an individual-based stochastic process adapted
to two datasets we have, which are introduced in Section 2.3. First, we consider a control
dataset of healthy bacteria, which we model using the classical adder model. Second, we
consider bacteria under the effect on the antibiotic ciprofloxacin.

Starting in Section 2.4, we will consider control datasets of wild-type strains of E.
coli growing in three different media, which from the poorest to the richest are: glycerol
(gly), glucose (glu) and glucose with amino-acids (gluaa). The same strains and conditions
are used to make macroscopic cultures on an agar pad and to cultivate individual cells in
the MM. These observations are obtained after carefully leading bacterial to steady-state
growth conditions (see [82] for the details of the experimental setting). This justifies the
assumption of ergodicity, proven rigorously in a more general model in [103], and allows
us to ultimately compare the macroscopic distributions with the distributions predicted by
the microscopic acquisitions, which we do in Section 2.5

Then, from Sections 3.6 to 3.9 we will consider the case where 3ng/ml of ciprofloxacin
(cip) are added for 12 hours mid-experiment. We aim to quantify the effects of this en-
vironmental shift under the three media considered, relatively to the baseline parameters
calibrated for the unperturbed model. In that regard, we propose a parametric extension to
the adder model of [85] to filamentous E. coli, by including the effects of growth and stress
level as covariates of the baseline adder division rate.

Indeed, although previous experiments have suggested that the adder model is robust
under diverse kinds of growth inhibitions [129], some types of stress can be multifactorial,
which may lead to perturbations of the adder model. Particularly, antibiotic molecules caus-
ing DNA damage, such as ciprofloxacin (cip), are known to have a substantial impact on
the growth dynamics of E. coli [115]. Under this type of damage, bacteria induce a stress
response mechanism called the SOS response [145, 102], which induces the delay or arrest
of cell division. This produces the emergence of "filamentous" bacteria several times longer
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than normal strains in the same medium [144], as shown by Fig. 1.1 further below.
At the same time, the intensity of the SOS response exhibits high heterogeneity among

individuals, even in isogenic populations under the same concentration of antibiotic [82].
Interestingly, once the stress is removed, filamentous bacteria are able to resume prolifer-
ation through a series of asymmetrical divisions [121, 144, 30]. Moreover, their divisions
fulfill, in average, the adder hypothesis [144, 121]. However, it is not clear how robust the
adder model is under such a heterogeneous response, and how fast it is able to restore size
homeostasis when the antibiotic is added and removed from the media.

In Section 3.6 we analyse the experimental results acquired by J. Broughton. The dose
of 3ng/ml of cip triggers a mild induction of the SOS response. The intensity of the SOS
response is quantified experimentally in each cell by the fluorescence-per-area of the GFP-
marked SOS reporter PsulA-mGFP, which serves as proxy for the concentration of the pro-
moter PsulA in the cell. It shows the great heterogeneity, time-wise and cell-wise, of our
SOS reporter, and propose an Ornstein-Uhlenbeck process to model their stochastic time
dynamics. Then, we model the effects of the SOS response on the adder mechanism. We
show again that, even at the same level of SOS induction, there is great variability on the
distribution of the added sizes at division. Thus, we introduce a probabilistic model giving
the distribution of the added size conditionally to the SOS level. We use in particular a
Generalised Gamma distribution [131] that allows to model the geometrical change of the
division rate induced by the SOS response and show its consequences. Finally, we model
the effect of the SOS level on the division position along the cell to account for the observed
asymmetrical divisions of filamentous bacteria.

Based on this parametrisation, in Section 3.7 we calibrate the proposed model by Max-
imum Likelihood Estimation (MLE). The estimated parameters are then used to simulate
the model and to compare it with the original single-cell data as validation. In this sec-
tion we also give some biological implications of our results, finishing with some concluding
remarks in Section 3.9. At that moment we take the opportunity to comment a crucial ob-
servation that we purposely disregard in this first model: the presence of cellular death,
both size-induced and SOS-induced.

2.2 The individual-based population model
We consider a stochastic formulation which accounts for the individual variability within
the population. To that extent, each individual cell i is characterised by a three-dimensional
vector ξi(t) = (ai(t), yi(t), xi(t)) consisting of:

• ai(t) is the added size from its birth to current time t,

• yi(t) is the current size at time t,

• xi(t) is the SOS level at time t.

In a first analysis, we will study the case of an unperturbed population, where the stress
level is assumed to be at its baseline, say x ≡ 0, for all individuals, so it does not affect the
dynamics.
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We call X = {(a, y) ∈ R2 : 0 < a < y, y > 0} the state space of all possible sizes.
Then, following the approach introduced by [57] and later extended to age-structured pop-
ulations [53], we formalise the population dynamics as a measure-valued stochastic process
Zt, which for every instant t > 0 gives the composition of the current population. It consists
of a discrete measure over the state space X in which each individual cell is represented by
a point mass on X , as illustrated by Fig. 2.1:

Zt =
Nt−1∑
i=0

δξi(t) (2.1)

where Nt =
∫
X Zt(dx) is the population size at time t, and each cell i is characterised by the

vector ξi(t) = (ai(t), yi(t)). The formal construction and well-posedness of such process is
discussed in Appendix A.

Figure 2.1: A possible realisation of the process Zt at a certain time t > 0 with a total of Nt = 20000
cells. A. Each dot corresponds to a single cell whose coordinates in the plane code for its added size
and current size (a, y). B. The integral

∫
X Zt(da, dy) = Nt gives the total number of individuals.

We assume that each cell in the population behaves independently. The population then
evolves in the continuous time through two fundamental dynamics: growth and division.
Whilst growth is assumed to be deterministic, the division mechanism will account for the
observed stochasticity.

1. Growth: Each cell i of size yi grows exponentially [65] at elongation rate λ > 0 which
we assume to be the same for the whole population:

dyi(t)

dt
= λyi(t).

Thereby, the size y(t) and added size a(t) at time t ≥ 0 of a bacterium which had
size y(s) and added size a(s) at time s < t are given by the following deterministic
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Figure 2.2: Variables modelling the deterministic growth between division

equations (see Fig. 2.2):

y(t) = y(s) exp(λ(t− s)) (2.2)
a(t) = a(s) + y(s) exp(λ(t− s))− y(s) (2.3)

2. Division: Cells divide independently, according to the adder model [133, 62]: a bac-
terium of birth size y0 will divide at a random size y0 +Adiv where the added size Adiv

is independent from y0, distributed according to

S(a) = P(Added size at division ≥ a) = exp

(
−
∫ a

0

B(α)dα

)
. (2.4)

S is called the survival function, since S(a) equals the probability of still having not
divided at an added size a. Thereby, function B can be understood as a division rate
per added length, with units length−1. The probability density function associated to
the added size is then

fA(a) = −S ′(a) = B(a)S(a). (2.5)

This formalisation corresponds to meaningful biological assumptions. It implies that
in order to decide the division time, cells do not sense time or their absolute size, but
rather the mass they have acquired since birth. Moreover, this formulation assures
that the added size is independent from the birth size, assuring also the lack of corre-
lation between added and birth sizes as reported in earlier observations [133, 85].

Finally, when a cell of size y divides, it is replaced by two cells of sizes ρy and (1−ρ)y,
where ρ ∈ (0, 1) is a random variable with probability distribution F .

The model is summarised in Fig. 2.3
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Figure 2.3: Summary of the adder model. The division occurs at rate B(a), where a = y− x is the
added size from birth.

2.3 Model of growth in mother machine

2.3.1 Indexation by vertical position
In order to describe the population growth inside a MM tube, we associate to each individual
i living at time t the vertical position hi(t) > 0 on the MM tube, see Fig. 2.4. We call Z̃t the
extended measure-valued process with spatially positioned individuals:

Z̃t =
Nt−1∑
i=0

δ(ξi(t),hi(t)),

whose first coordinates ξi(t) = (ai(t), yi(t), xi(t)) are a copy of Zt and such that hi(t) follows
the following additional dynamics:

3. Spatial configuration: When a cell of size y and vertical position h divides, its re-
placed by two newborn cells of size ρy and (1 − ρ)y as explained above, and which
respective vertical positions are h and h− ρy. Between divisions the position growths
exponentially at elongation rate λ : h′(t) = λh(t). See Fig. 2.4.

Then we order the individuals in Z̃t from lowest to highest in the h coordinate. This
indexation is represented in Fig. 2.4. Following [57], this indexation can be formalised
using the coordinate projection described in Definition A.1.2 in the Appendix. In particular,
let us set O0 :Mp(X × R× R+)→ X × R× R+ the projection

O0

(
Nt−1∑
i=0

δ(ai(t),yi(t),xi(t),hi(t))

)
= (a0(t), y0(t), x0(t), h0(t))

giving the first element in the order given by the h coordinate. Therefore, the tracked
lineage of the cell trapped at the bottom of the tube (see Fig. 1.1) is given for all t ≥
0 by the individual indexed 0 in Z̃t. This lineage is given by O0(Z̃t). When there is no
possible ambiguity, we will simply write Ot := O0(Z̃t), and coordinate by coordinate Ot =
(At, Yt, Xt, Ht).
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Figure 2.4: Indexation by vertical position in the MM.

Now, consider a time grid of N time points {n∆t, n ∈ J0, NK}, with an acquisition time
∆t. We model the MM observations as a discrete sample of J independent realisations (one
for each MM tube) written

(Oj
n∆t)

j=1,...,J
n=0,...,N .

2.3.2 Censored data in a finite depth mother machine

If the mother machine is supposed infinitely long, this scheme is equivalent to choose one
daughter at random at each division event. This is called forward sampling in the biophysics
literature [136]. If the mother machine is supposed to have a finite depth L > 0, cells that
reach h = L are eliminated. This induces the presence of right censoring: division events
such that the division size is greater than L cannot be observed. This is, conditionally to an
initial size Y0, the added size at division AL

div that can be observed in a finite MM of length
L is given by

AL
div = Adiv ∧ C,

where C = L− Y0 is the censoring added size imposed by the MM depth. Under the adder
assumption the distribution of the added size at division Adiv does not depend on Y0, so Adiv

and C are independent. The censoring is said to be non informative in this case [135].
We introduce the censoring indicator ∆ = 1Adiv≤C , and, as in classical survival analysis,
we suppose that we dispose of joint observations (AL

div,∆). Suppose that gY0 and GY0 are
the probability density function and cumulative distribution function of the birth size Y0.
Thanks to the independence of the censoring, the joint distribution of (AL

div,∆) is given for
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all measurable bounded function h : R+ × {0, 1} → R+ by

E
[
h
(
AL

div,∆
)]

= E
[
h
(
AL

div, 1
)
1Adiv=AL

div ,C≥Adiv

]
+ E

[
h
(
AL

div, 0
)
1Adiv>AL

div ,C=AL
div

]
=
∑

δ∈{0,1}

∫ +∞

0

h(a, δ) (fA(a)(1−GY0(L− a)))
δ (S(a)gY0(L− a))

1−δ da,

In practice, the birth size is observed, so the joint likelihood of (AL
div,∆) is simply reduced

(up to a normalisation constant) to

p((a, δ)) ∝ fA(a)
δS(a)1−δ. (2.6)

Censoring events (∆ = 0) occur fairly rarely in the control dataset. However, since
we will work under conditions that induce filamentation, it becomes biologically relevant to
accurately account for this bias. Right censoring of this kind is a classical problem in the
literature of survival analysis. In particular, we use the R package flexsurvreg [81] that
allows to easily integrate the censoring status of the observations.

2.4 Inference of the model parameters from individual cells
at stationarity

2.4.1 Estimation of the adder division rate function B

To estimate the adder division rate B we consider only the observations of cells at division
(or censoring time, if the observation is right-censored):

(Oj

T j
n∧Cj

n
)j=1,...,J
n∈N ,

where T j
n is the time of the n-th division or censoring event observed in the j-th lineage.

In general this information is poorer than the previous scheme. However, in the case of
the adder model, since the added size is independent from the initial size, one has that the
joint sample of added sizes at division

(
AL
)j
Tn

and censor status (∆)jTn
are independent and

identically distributed random variables of joint density p given by (2.6). In this case, the
estimation is the same as for a classical renewal model, which can be done by the classical
approaches of parametric and non-parametric survival analysis [135, 46].

FunctionB is a hazard rate on length units, for which several classical parametric hazard
models might be suitable. The simplest one is the exponential model: if B is assumed to be
equal to a constant, then Eq. (2.4) implies that the distribution of the added sizes at division
follows an exponential law. Other more realistic models are the Gamma distribution, the
Lognormal distribution and the Weibull and Gompertz models which are extensively used
in hazard rates estimation. The selection of the most suitable model can be performed using
the Bayesian Information Criterion (BIC), among other statistics.
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Generally speaking, to build an estimator B̂ of B we use the empirical distributions
obtained from the mother machine. Call f̂A the Maximum Likelihood Estimator of the dis-
tribution of added sizes obtained by fitting the chosen model to the mother machine data
(using the joint likelihood (2.6) to include eventual censorship). Then, from (2.5), we use
the point-wise estimator

B̂(a) =
f̂A(a)

Ŝ(a)
(2.7)

where Ŝ is obtained by integration of f̂A.
Table 2.1 shows that the BIC supports systematically the selection of the lognormal

model. The quantile-quantile plots of Fig 2.5 reflect the same conclusion. Nonetheless,
important deviations from the predicted quantiles are observed in the tail of the distribution.

Model Glycerol medium Glucose medium Glucose + aa medium
Weibull 3959.145 1689.818 15339.65
Gamma 2323.495 1376.991 14113.94
Lognormal 2224.319 1313.494 14083.10

Table 2.1: BIC scores for the fitted models in each medium.

Figure 2.5: Q-Q plots of the fitted distributions to the added sizes in each medium. Each graph
compares the predicted quantiles and the observed ones. It confirms the best fit of the lognormal
distribution. However, systematic underestimations are observed in the tails of the distribution.

We recall that the lognormal distribution is parametrised by two quantities: the mean
log-added size µ and the standard deviation of the log-added size σ. If ϕ is the standard
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Medium µ (log µm) σ (log µm)
Glycerol 0.4606340 ± 0.0071999 0.2123930 ± 0.0050906
Glucose 0.5034900 ± 0.0212816 0.3156287 ± 0.0150477
Glucose + aa 0.7063365 ± 0.0084250 0.3483618 ± 0.0059572

Table 2.2: 95% CI of the lognormal distribution parameters for the fitted distributions in each
medium.

Normal PDF and Φ its CDF, we have that

S(a) = P(log(Added size) ≥ log(a)) = 1− Φ

(
log a− µ

σ

)
.

Therefore the parametric estimator B̂ has the form

B̂(a) =
ϕ
(

log(a)−µ̂
σ̂

)
σ̂a ·

(
1− Φ

(
log a−µ̂

σ̂

)) (2.8)

The estimated parameters and 95% confidence intervals are given in Table 2.2 for the
three different media. The respective resulting B̂ functions along with their 95% confidence
intervals are given in Fig. 2.6. We are able to infer some quantitative effects of the envi-
ronmental richness on the adder mechanism. For example, Fig. 2.6 shows that the adder
division rate is twice as big in glycerol than in glucose, for example, which means that in
average, after adding the same amount of size, cells in glucose are two times more likely to
divide than in glycerol.

2.4.2 Estimation of the division ratio distribution F
The mother machine device allows to identify the progenitor cell for each followed individ-
ual. In particular, this allows to compute the ratio between the birth size of each cell and
the division size of its mother. In the mother machine experiments, only one daughter cell
is followed after the division. This induces a spurious bias in the empirical distribution of
ratios which is then non necessarily symmetrical. Since this should not be observed in a
population dynamic where both daughter cells are preserved, we complete the dataset by
adding the complementary ratios, such that the sample is centred around 1/2.

We compute this ratio for every cell in each medium and we fit a Beta distribution F̂
as a suitable estimator of the ratio distribution. The estimated parameters along with their
95% confidence intervals are given in Table 2.3 for the three different media. We see in
particular that the estimates for both parameters of the Beta distribution have almost the
same value, which comes from the symmetry of the distribution. The bigger the value of
α and β the more concentrated the distribution, which can be observed in Fig. 2.7. We
see that the distribution is wider in richer media. This could mean that the position of the
division septum is less exact in fast growing bacteria.

Finally, using the estimated B̂ and F̂ , we can simulate the process Zt for different ini-
tial conditions. The stochastic simulation consists on a Gillespie algorithm which exploits
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Figure 2.6: Estimated values of B̂ (Eq. (2.8)) for the three different media according to the param-
eters of Table 2.2. Grey curves correspond to random realisations of B with parameters sampled
from the asymptotic distribution of each parameter estimator. The median curve and the borders of
the 95% confidence interval are coloured.

Medium α (First shape parameter) β (Second shape parameter)
Glycerol 20.541535± 0.6927115 20.541012± 0.6926937
Glucose 8.946326± 0.5966249 8.946660± 0.5966478
Glucose+aa 5.961458± 0.1415771 5.961717± 0.1415835

Table 2.3: 95% confidence intervals of the Beta distribution parameters for the fitted distributions
of the mother-to-daughter-size ratios in each medium.

the fact that the proposed B function is bounded to perform an efficient rejection sampling
technique. The result is a simulated population process Ẑt which can be compared to macro-
scopic population data. Fig. 2.8 summarises the core of the method.

2.5 Comparison to population "snapshot" data
As we have proven in [103] (see also Chapter 3 herein), in expectation, the process Zt

converges exponentially fast in weighted total-variation norm (V -uniform convergence) to-
wards its steady-state distribution π∗. This is, for all test function g we have

E

[
Nt∑
i=1

g (Xi(t))

]
t→+∞∼ eλt

∑N0

i=1 yi(0)

⟨y⟩

∫
X
g(x)π∗(x)dx+O(e−ωt), (2.9)

where the elongation rate λ is also the population growth rate (Malthusian parameter), the
total mass

∑Nt

i=1 yi(t) propagates the effect of the initial condition and the steady-state mean
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Figure 2.7: Estimated densities F̂ for the three different media according to the parameters of Table
2.3

Mother Machine Data

Empirical distributions of division sizes f̂D and added sizes f̂A

Parametric estimation of B̂ (lognormal model) and F̂ (beta model)

Simulation of the process Zt Comparaison with population data

Figure 2.8: From microscopic observations to the macroscopic characterization of the growing pop-
ulation. Schematic representation of the proposed parametric framework.

size ⟨y⟩ =
∫∫

yπ∗(a, y)dady acts as a normalisation constant. The constant ω > 0 quantifies
the speed of convergence. Moroever, π∗ is given by [70]:

π∗(a, y) =
exp

(
−
∫ a

0
B(α)dα

)
y2

f0(y − a), (2.10)

where f0 is the unique solution to the fixed point problem

f0(x) = 2T [f ](x) = 2

∫ 1

0

f0 ⋆ fA

(
x

ρ

)
F (ρ)dρ, (2.11)
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where ⋆ denotes the convolution product. The unique solution f0 to Eq. (2.11) can be
obtained numerically, using an iterative power method. This is, from any function q0 over
R+, the successive iterations

qk+1 = T [qk] , k > 0

give approximated solutions with qk → f0 as k → ∞. [62] show the theoretical properties
of this fixed point problem assuring the convergence of this method to f0. Then, using the
estimates of B and F obtained from the MM data we can obtain the predicted steady-state
distribution as presented in Fig. 2.9.

Figure 2.9: Plot of π∗ given by Eq. (2.10) with B and F as given by the parametric estimators fitted
for each medium. Projected onto each plane the marginal distributions of a and y are also shown.

We are particularly interested in the marginal steady-state distribution of sizes p, which
is the sole observable distribution in the snapshot data. From Eq. (2.10) we have that

p(y) =

∫ y

0

π∗(a, y)da =
1

y2

∫ y

0

S(a)f0(y − a)da =
f0 ⋆ S(y)

y2

In particular, the mean cell size is given by

⟨y⟩ =
∫ ∞

0

f0 ⋆ S(y)

y
dy

and its variance by

s2 =
∫ ∞

0

(
y − ⟨y⟩
y

)2

f0 ⋆ S(y)dy.

We call p̂(y) the predicted values of p(y) using the estimates for B and F fitted to the
mother machine data in each medium. Figure 2.10 and Table 2.4 compare the values of
p̂ with the empirical distributions of sizes observed in population growth experiments with
the same media.
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Figure 2.10: Comparison of the predicted steady-state size distributions and the size measurements
in the agarose pads.

Glycerol Glucose Glucose + aa
Predicted mean size ⟨̂y⟩ (µm) 2.3696 2.5913 2.9172

Observed mean size (µm) 3.0188 2.9154 3.6144
Predicted size standard deviation ŝ (µm) 0.6846 0.9432 1.2679

Observed size standard deviation (µm) 0.8963 0.8082 1.1423

Table 2.4: Comparison of the predicted steady-state size distributions and the size measurements in
the agarose pads.

We recall that the population data and the estimated p̂ came from completely indepen-
dent experiments (no fitting parameter). Thus, the similarity between the shapes of the
distributions is rather surprising. This could imply that the macroscopic dynamics is driven
by similar division rates and mother-daughter size ratio as observed in the MM. In par-
ticular, while the dispersion is well approximated, there is a systematic shift to the left in
all distributions. This might indicate an exogenous effect that affects systematically all the
cells, producing smaller cells in the mother machine than in the population. This could
by explained by the physical constraints that the mother machine device imposes on the
bacteria.

56



2.6. MODELLING THE SINGLE-CELL RESPONSE UNDER
DYNAMIC DNA DAMAGE

2.6 Modelling the single-cell response under dynamic DNA
damage

2.6.1 Adder statistics under DNA damage
As we can see in Fig. 2.11, the presence of ciprofloxacin affects substantially the size control
dynamics considered in the previous paragraphs. The first two sample lineages #467 and
#7405 show that despite cip-induced filamentation, bacteria are able to divide during the
antibiotic treatment and to keep dividing after the stress is removed. On the contrary, the
sample lineage #8158 shows that, even after some successful divisions, certain bacteria
seem to die (stop growing and dividing, stricto sensu). In the following lines we aim to
model the effect of ciprofloxacin-induced DNA damage in the division dynamics previously
modelled using the adder. To that extent, in all our data analysis and further modelling we
will disregard these dying individuals, which we suppose will never divide.

Figure 2.11: Sample of 3 cell size lineages Yt in glucose-aminoacids medium. Data acquired by J.
Broughton. Cells are exposed to cip during 4 ≤ t < 14 (Cip +), indicated between dashed lines. In
0 ≤ t < 4 (Before cip) and 14 ≤ t < T = 25 (After cip) there is no antibiotic.

Let us first focus on the distribution of the added size at division Adiv when the cip-
induced DNA damage is present. As shown by Fig. 2.12A, despite the presence of antibiotic
in the media, the adder mechanism is kept in average. Indeed, we see that for all media and
conditions, the median added size (circles) is independent from birth size, in coherence to the
adder model and previous observations under different kind of damage [144, 121]. At the
same time however, the distributions of the added size are wider under ciprofloxacin than
under control, indicating a perturbation of the adder model in higher moments of the added
size distribution. This is confirmed by Fig.2.12B, that shows that the standard deviation of
the added size is positively correlated with birth size, specially in rich media, breaking the
independence property of the adder model considered so far. Indeed, Fig.2.12C shows that
the coefficient of variation (CV, defined as the quotient between the standard deviation and
the mean of the distribution) of the added size distributions increases with the level of SOS
induction measured at division, for all three media. Fig 2.12D quantifies the effect of the
SOS level on the added size CV and shows what seems to be a linear trend with respect to
the logarithm of PsulA fluorescence, with medium-dependent slopes.

The effect of SOS induction on the adder variability is specially visible in fast growing
medium and under the presence of ciprofloxacin, but it is also present in the control ex-
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Figure 2.12: The adder is increasingly perturbed by the level of SOS induction. Descriptive
statistics of the data acquired by J. Broughton. A. Rescaled added size at division (added size
divided by the mean value by media) as function of the birth size (also rescaled by its mean by
media). Circles indicate median values and lines correspond to the interquartile range. B. Standard
deviation of the added size as function of the rescaled birth size, grouped by quintiles of SOS level
observed at division. C. Added size distributions (kernel density estimates) grouped by quartile of
SOS level at division in the vertical axis. The mean of the distribution is indicated by a red vertical
line. The densities are coloured idepending on their coefficient of variation (CV). D CV of added size
distribution in function of the level of SOS induction at division.
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periments. This made us wonder whether the decreasing ("loss of control") regime of the
division rate suggested by the Lognormal fit of Section 2.4 and reported by Osella et al.
[117] was linked to the level of SOS induction. To address this question we will intro-
duce in Section 2.6.3 a more flexible model that, conditionally to the SOS level, includes
the Lognormal distribution, but also distributions with non vanishing division rates. Before
introducing the coupled SOS-adder model, we establish below a model for the dynamics of
the SOS response.

2.6.2 Dynamics of the SOS response

Figure 2.13: Single-cell trajectories of SOS induction in MM lineages. Experimental data acquired
by J. Broughton. A SOS induction (PsulA-mGFP fluorescence) of the acquired MM lineages under
different media, without any antibiotic (left) and under 3 ng/ml cip (right). The antibiotic is admin-
istrated during t ∈ [2, 14] marked by dashed lines. B. Density estimates of the distribution of the
SOS induction level in the control dataset and during the different phases of the antibiotic treatment.
C. Random subsample of 20 MM lineages, coloured by the level of SOS induction.

We recall that we have access to time series of the fluorescence-per-area of a GFP-
marked SOS transcriptional reporter, PsulA [82]. The observations summarised in Fig.
2.13 show the important heterogeneity, both time-wise and cell-wise, of the SOS fluo-
rescence signal. Fig. 2.13A shows that the dynamics are modulated by the presence or
absence of ciprofloxacin. However, the intensity of the response is far from being homo-
geneous among the individual bacteria. Fig. 2.13B shows broad distributions of the SOS
response, especially under the effect ciprofloxacin. Moreover, Fig. 2.13C shows that the
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SOS response is not coordinated either. During the antibiotic treatment, but even in con-
trol conditions, the times of strong SOS induction arrive rather stochastically across the
different lineages. Thus, two crucial differences with respect to the classical adder studied
is that the SOS response (and hence the perturbation it has on the adder mechanics ob-
served in Fig. 2.12)) is dynamic and random. Based these observations we introduce now
a time-continuous stochastic model of the SOS response.

Precedent simulation studies that have looked at the expression levels of several proteins
participating in the SOS response, have shown that the SOS regulatory network can be
accurately modelled by low-dimensional chemical reaction models [58, 128, 132]. These
models are typically characterised by negativetely autoregulated motifs, as shown in Fig.
2.14, where a stressor u produces some damage z, which triggers a response x that, in
turn, repairs the damage z.

Stressor
u (input)

Damage z
(output)

Response
x (latent)

PsulA-mGFP
(Reporter)

Figure 2.14: Scheme summarising the negative autoregulation models of the SOS response of [132]
(from where the Figure was adapted). Arrows marked→ represent positive regulation (v.g. synthe-
sis or disinhibition), while ⊣ represents negative regulation (repression or inhibition). The fluores-
cent SOS transcriptional reporter PsulA-mGFP that we use as measure of the SOS activity (variable
trait x) appears highlighted.

To account for this dynamic feedback, the authors in [132] propose a simple determin-
istic model they name integral feedback model (IF). Let u, x, z three real-valued functions
of time representing at all time t ≥ 0, the stressor signal u(t) (ciprofloxacin in our case),
the stress response x(t) (the SOS response) and the amount of damage z(t) induced by the
stress (DNA breaks), which are solution to the ODE{

z(t) = u(t)− x(t)
x′(t) = θz(t)

. (IF)

This supposes that the amount of damage z(t) is the result of the difference between the
value of the stressor signal u(t) (damage induction) and the stress response x(t) (damage
repair). At the same time, the stress response x(t) senses the damage, and its intensity
increases linearly with the level of damage z(t) with a proportionality factor equal to θ > 0.
The parameter θ thus represents the rate of reactivity of the stress response with respect
to the perceived damage.

Now, substituting the first equation on the latter, the equation for x(t), reduces to the
autonomous equation

x′(t) = θ(u(t)− x(t)).
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Figure 2.15: Simulated trajectories of the SOS level Xt according to Eq. (2.12) with θ0 = µ0 =
ζ0 = 1 and µ1 = 5, θ1 = 1, ζ1 = 2.

However, we have seen that the SOS response is not coordinated, and varies significantly
both among individuals and in time. Thus, to incorporate this dymamic variability, we
generalise the deterministic (IF) model to the solution of a stochastic differential equation
(SDE). We propose to model the dynamics of the SOS signal (measured as log-fluorescence
by unit of volume, in the scale presented in Fig. 2.13) as a real-valued diffusion process
(Xt)t≥0 solution to the Orstein-Uhlenbeck SDE

dXt = θc(t)(µc(t) −Xt)dt+ ζc(t)dBt (2.12)

where Bt is a standard Brownian motion, c(t) = 1t∈[2,14[ equals 1 whenever the antibiotic
is present in the medium and 0 otherwise, and θi, µi, ζi, i ∈ {0, 1} are some non-negative
constants. In particular, these parameters can be interpreted as follows:

• µi is the basal SOS expression level under stress i ∈ {0, 1}.

• θi > 0 measures the strength at which the SOS expression reverts to its basal level af-
ter periods of under or over-expression. It is related to the molecular rates of induction
and repression of the SOS response.

• ζ2i > 0 is the variance with which the log-fluorescence level fluctuates around the
average value, accounting for various potential sources of stochasticity in the signal.

Fig. 2.15 shows an example of a simulation of Eq. (2.12). Interestingly, notice how
the inflexion of the observed SOS level at the regime changes (Fig. 2.13A) can be well
recovered by the Ornstein-Uhlenbeck model.
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2.6.3 Coupling the adder and SOS dynamics
Using the Ornstein-Uhlenbeck model for the SOS dynamics, we propose now a phenomeno-
logical model describing how the SOS induction affects the adder division rate. Later in
this section, we will model in a similar way, the effect of SOS induction on the mother-to-
daughter size ratio distribution F .

We recall that divisions occur at random times, driven by an instantaneous division rate
β ≥ 0 that depends on the current cell trait ξt = (at, yt, Xt) such that

P(Division time ∈ [t+ dt[ |Division time ≥ t, ξt) = β(ξt)dt+ o(dt). (2.13)

Within the framework of the adder model, β is written as

β(a, y, x) = λyB(a, x), (2.14)

where B is the adder division rate and λ is the elongation rate. Under the adder hypothesis,
the function B considered in Section 3.4 depended only on a. Our observations discussed
above, lead us to propose rates B that depend also on the value of the SOS level x.

Notice that in general this will result in the lost of the adder property. Indeed, let
x0 = (0, y0, x0) the initial vector trait for a newborn individual of birth size y0 and SOS level
at birth x0. Then, for every measurable bounded function h : R+ → R, doing the change of
variables t 7→ a := y(t)− y0 we obtain

Ex0 [h(Adiv)] = Ex0

∫ +∞

0

h (y(t)− y0) β (y(t)− y0, y(t), Xt) e
−

∫ t
0 β(y(τ)−y0,y(τ),Xτ )dτdt

=

∫ +∞

0

h (a)Ex0

[
B
(
a,Xτ(a)

)
exp

(
−
∫ a

0

B
(
s,Xτ(s)

)
ds

)]
da,

where the expectation is taken over the Ornstein-Uhlenbeck processX and τ(a) = λ−1 log(1+
y−1
0 a) is the time needed to reach an added size a given the birth size y0. Therefore, the dis-

tribution of Adiv depends on general on the initial size y0.
Henceforth, in agreement with the observations presented in Fig. 2.12, we consider

that the SOS induction might perturb the adder mechanism, so that the probability law of
the added size at division can ultimately depend on the initial size of the cell. In general, we
will consider B of the parametric form

B(a, x) =
f(a|x)∫ +∞

a
f(u|x)du

(2.15)

where f(a|x) is a probability density function on the a variable that depends on some pa-
rameters which are function of x. In particular, if the SOS response is constant, we recover

P(Division added size ∈ [a+ da[ |X ≡ x) = f(a|x)da,

independently on the initial size, which is in accordance to the adder hypothesis. Recall
however that, when Xt evolves through time, it is not longer true that f(·|x) corresponds
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to the conditional distribution of the added size at division when the SOS induction level at
that time equals x, as we discussed in the paragraph above.

To contrast with the results without antibiotic perturbation, we will consider the case
when f(·|x) corresponds to a Generalised Gamma distribution [131, 120], which includes
the three cases tested in Section 2.4.1 at the cost of an additional parameter. This distribu-
tion is parameterised by 3 parameters (m, s, q) ∈ R∗×R+×R and can be characterised as fol-
lows. Let R be a Gamma random variable of parameters (1/q2, 1) and let W = log (q2R) /q.
Then the probability law of A = exp(m + sW ) is called GenGamma(m, s, q). This means
that A follows a log linear model [120]:

A ∼ GenGamma(m, s, q) ⇐⇒ logA = m+ sW. (2.16)

Thus, the parameter m plays the role of a scale parameter and it is related to the log-scaled
mean, while the parameters s an q determine the shape of the distribution (see Fig. 2.16).
We consider the case q > −1/(2s), which is necessary and sufficient to have finite variance,
see [131].

Figure 2.16: Generalised Gamma model for the effect of the SOS response on the added size
distribution. Scheme of the generalised gamma model for Adiv given by (2.16). The scale parameter
m0 is fixed and the shape parameters s(x) and q(x) are SOS dependent.

Interestingly, Cox et al. [37] show that different values of s and q can generate very
flexible rate functions (Fig. 2.17). Indeed, the Gamma distribution of mean em and CV
s is obtained doing q = s. The Lognormal distribution, of log mean m and log standard
deviation s is obtained by doing q = 0. This flexibility will be important to account for the
SOS-induced filamentation, as our results will show further below.

Thus, based on the empirical observations summarised in Fig. 2.12, we aim to model the
dependence of the SOS intensity x on the parametersm(x), s(x) and q(x) of f(·|x). First, as
shown by Fig. 2.12A and C we will make the assumption that, conditionally to a constant
SOS response, the median added size (in log scale) does not depend on the intensity of the
response. This means that we fix a medium-dependent constant m(x) = m0 for all x ∈ R.

Second, we make the following assumptions concerning the effect of SOS induction on
the shape of the added size distribution. Motivated by the linear trends observed in Fig.
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2.12D, we make the strong assumption that both q(x) and s(x) are affine functions of the
SOS level x. This is, we introduce two parameters q1 ∈ R and s1 > 0 such that

q(x) = q0 + q1x,

s(x) = s0 + s1x,

where the intercepts q0 and s0, obtained in total absence of SOS response, can be obtained
from the previously analysed control dataset, and will be supposed known. Then, starting
from a certain (s0, q0), depending on the values of q1 and s1, the value of x can change the
shape of the division rate as shown by the example at the left panel of Fig. 2.17.

Figure 2.17: Adapted from [37]. See Fig. 1 therein to see a more detailed version. At the left
panel, scheme representing the 4 possible shapes of the division rate B that can be obtained with
a GenGamma(m, s, q) model at fixed m > 0. At the right panel, starting from (s0, q0) giving a
monotonically increasing division rate, and depending on the values of q1 and s1, an increased level
of SOS response might lead to an arc shaped lognormal-like division rate (A), or to a monotonically
decreasing division rate (B).

2.6.4 Effect of SOS induction on the mother-to-daughter size ratio
distribution

As before, we let ρ ∈ [0, 1] the ratio between the observed size of the followed mother
after and before division and we write k(y, ρ) the probability density that a mother of size
y produces a daughter of size ρy. In Fig. 2.18A we present the empirical distribution
of ρ observed throughout the experiment in the three different media. We see that the
number of possible septa (position where the division occurs) increases with the mother size.
Similar observations have been reported in similar experimental settings. [144] observed
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Figure 2.18: Size-dependent cell division of filamentous E. coli.- A. Empirical distribution of ρ as
function of the mother size y extracted from single lineages in MM. Data acquired by J. Broughton.
B. Scheme of the Min system. The reaction-diffusion dynamics of the Min proteins (vector function
U in the cartoon), produce standing waves at whose nodes division proteins accumulate. C. Scheme
of the proposed Beta mixture model. Example with N(y) = 3.

very similar distributions when looking at the distribution of ρ after switching from stress
medium (1µM tetracycline, another antibiotic) to non-stress medium, in in a microfluidic
chamber (different experimental setting than ours).

Moreover, previous studies have shown that the number of septa is tightly controlled by
a system of proteins called the Min system [107], that diffuse inside the cells. It has been
shown experimentally and by PDE simulations that the spatial reaction-diffusion dynamics
of these Min proteins lead to standing waves inside E. coli [107]. Remarkably, division
proteins accumulate in the nodes of these standing waves [107]. Thus, division septa can
originate at these positions. Since the vibration mode depends on the length y of the cell,
so does the number of nodes, and thus, of possible septum positions (see te cartoon of Fig.
2.18B). This introduces a size-dependence on the division kernel that was absent in the
previous model. In particular we loose the property of self-similarity: the division place
does not only depend on the mother-to-daughter size ratio, but also on the absolute size of
the mother. This important generalisation will be taken into account in the analysis carried
out in Chapter 3 and [103], where an application of the main result shows that a steady-
state distribution of sizes still exists, and that any population of cells converge at exponential
speed towards it.

In particular, the experimental results and PDE simulations of a reaction-diffusion model
of the Min system carried out by Wehrens et al. [144] show that the nodes appear near very
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precise positions. This is, they show that both the empirical and simulated distributions of
ρ, reaches their maximum at constant positions (wN

n )n∈J1,NK ∈]0, 1[ determined by the total
number N of nodes and given explicitly by

wN
n =

2n− 1

2N
. (2.17)

Based on these previous findings and our own observations, we propose a parametric
model for k(y, ρ). First, we call N(y) the number of possible septa, which is function of
the mother size y. In particular, we suppose that there is a critical size parameter y∗ that
determines the number of possible septa by the rule

N(y) =

[
y

2y∗

]
+ 1, (2.18)

where [u] is the integer part of u. This means that if the mother size is below 2y∗ there is
only one possible septum (N = 1), if the mother size is between 2y∗ and 4y∗, then there are
two possible septa (N = 2), etc. As such, y∗ can be thought as related to the characteristic
wavelengths of the standing waves produced by the Min system.

Additionally, we suppose that, conditionally to the mother size y, the division can occur
at each possible septum with equal probability, this is, each possible site can be chosen
uniformly with probability 1/N(y). Therefore, we suppose that k is of the form

k(y, ρ) =
1

N(y)

N(y)∑
n=1

FN(y)
n (ρ) , (2.19)

where, for all fixed N and n, FN
n (ρ) is the probability density of producing a daughter of

size ρ times the size of the mother, when the division happens at the n-th septum among
the N possible ones.

Finally, we suppose that cells have no particular orientation. For example, if N = 3, the
first and the third septa cannot be distinguished. In general, this imposes that our densities
F have to verify, for all n ≤ N/2 and all ρ ∈ [0, 1] a symmetry condition written

FN
n (ρ) = FN

N+1−n(1− ρ).

To contrast with the distributions fitted in Section 2.4, we will suppose in particular that
FN
n is the probability density function of the Beta distribution of parameters (αN

n , β
N
n ). This

is

FN
n (ρ) =

Γ(αN
n + βN

n )

Γ(αN
n )Γ(β

N
n )
ρα

N
n −1(1− ρ)βN

n −1. (2.20)

The findings of Wehrens et al. suggest to take, for all N > 1, n ∈ J1, NK, wN
n as the mode

of the distribution FN
n , this is, such that wN

n = argmax0≤ρ≤1F
N
n (ρ) (i.e. as the peak of

the observed distribution). Since for αN
n > 1 and βN

n > 1 the mode is given by αN
n −1

αN
n +βN

n −2

(otherwise equal to 0 and 1, and therefore not of our interest), we want

wN
n =

αN
n − 1

αN
n + βN

n − 2
.
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Let the denominator be called vNn := αN
n + βN

n − 2 > 0. Then we can write

αN
n = 1 + vNn w

N
n ,

βN
n = 1 + vNn

(
1− wN

n

)
.

The value of vNn is related to the variance as follows

Varρ∼Beta(αN
n ,βN

n )(ρ) =
αN
n β

N
n

(αN
n + βN

n + 1)(αN
n + βN

n )2
=

1 + vNn + (vNn )2(wN
n − (wN

n )
2)

(vNn + 3)(vNn + 2)2
,

which is a decreasing function of vNn . As such, vNn measures the "concentration" (as con-
trary to dispersion) of the distribution of ρ. We make the biological assumption that the
concentration of division proteins around the chosen septum is independent of the length
of the cell and the total number of possible septa. This translate as setting for all N ≥ 1,
n ∈ J1, NK, vNn = v > 0 constant, depending only on the culture medium.

Therefore, using the parametrisation, the kernel k depends only on two parameters (for
each medium): the critical size y∗ which defines the number of possible septa, and the con-
stant v which determines the dispersion of the Beta distributions around them. Fig. 2.18C
summarises this model.

2.6.5 Summary of the model for the coupled SOS-adder dynamics
To model the coupling between the SOS dynamics and the adder control we have done the
following assumptions:

1. SOS stochastic dynamics. The SOS response intensity Xt is an Ornstein-Uhlenbeck
process given by SDE (2.12). The drift and diffusion parameters are functions of a
deterministic stress signal c(t) = 1[τ0, τ1[(t), equal to 1 during the antibiotic treatment
(for all t such that 2 = τ0 ≤ t < τ1 = 14), and equal to 0 otherwise. For each value of
c ∈ {0, 1} the process is driven by 3 parameters: the long-term mean µi > 0, a drift
term θi > 0 and a variance term ζ2i > 0. We call ηX := (µ0, θ0, ζ

2
0 , µ1, θ1, ζ

2
1 ) the vector

of these parameters.

2. Decision of the division instant. The division is supposed to be triggered by the
added size since birth a(t) (adder model) and the level of SOS intensity Xt. This
is described by a division rate β(a, y,X) = λyB(a,X), where λ is the elongation
rate, supposed to be the same constant for all cells. Given x, B(·, x) is supposed
to be the rate function (given by (2.15), for a density function f) of a Generalised
Gamma distribution of parameters (m0, s(x), q(x)). This means that under constant
SOS expression (Xt)t ≡ x,

logAdiv = m0 +
s(x)

q(x)
log
(
q2(x)R

)
R ∼ Gamma(q−2(x), 1)
s(x) = s0 + s1x , q(x) = q0 + q1x
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The intercepts s0 and q0 are to be obtained from the control dataset. The unknown
parameters s1 > 0 and q1 ∈ R measure the additional linear effect of the SOS level x
on the dispersion of the distribution around m0 (Fig. 2.16). We call ηβ := (s1, q1) the
vector of these parameters.

3. Offspring production. When a cell of size y divides, it produces two daughters of
sizes ρy and (1−ρ)y, only one of whom is followed. The value of ρ is generated by the
probability kernel k(y, ·) given by a mixture model of Beta distributions (2.19)-(2.20).
The mixture depends on an unknown critical size y∗ and a concentration parameter v,
both depending only on the culture medium. We call ηk = (y∗, v) the vector of these
parameters.

The biological regulatory effects conveyed by this model are summarised in Fig. 2.19.
The SOS level is supposed to be immediately autoregulated by the Ornstein-Uhlenbeck
equation (2.12). The Generalised Gamma model chosen for the adder division rate imposes
a non-trivial negative regulation (if s1 > 0) consistent with SOS-induced division arrest,
by increasing the tail of the distribution of added sizes. In turn, the division rate controls
the size homeostasis in agreement with the adder model. In particular, in presence of fil-
amentation, the birth size, which depends on the septum relative position, is controlled by
the mother division size, as imposed by (2.19).

SOS level
X

Division rate
B(a,X)

Division size
Ydiv

Birth size
Y0

Septum position
ρ

ηβ

ηX

ηk

Figure 2.19: Summary of the regulatory effects of SOS induction on the adder mechanism pro-
posed by our model. Arrows marked → represent positive regulation (A → B if B increases with
A), while ⊣ represents negative regulation (A ⊣ B if B decreases as A increases). Over the arrows
the concerned parameters of the model.

2.7 Parameter estimation of the coupled SOS-adder
dynamics using cell lineages

As introduced in Section 2.3, we model our observations as a discrete sample of I indepen-
dent realisations during time t ∈ [0, T ], with T = N∆t. This is, we consider a sample(

Oi
n∆t

)i=1,...,I

n=0,...,N
= (Ai

n∆t, Y
i
n∆t, X

i
n∆t)

i=1,...,I
n=0,...,N

To model this discrete-time process we define first p(a, y, x) as the probability to divide in the
following ∆t interval starting with state (a, y, x). Then, for all n we let U i

n be a Bernoulli
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random variable of parameter p(Ai
n, Y

i
n, X

i
n), this is, which is equal to 1 if the lineage i

divides in the interval [n∆t, (n + 1)∆t[, and 0 otherwise. Since the intervals of time when
a a division occurs are observed, Un is also an observed variable, available from the mother
machine data.

In general, p(a, y, x) is given by

p(a, y, x) = Ex

[∫ ∆t

0

β(a+ y(eλt − 1), yeλt, Xt) exp

(
−
∫ t

0

β(a+ y(eλs − 1), yeλs, Xs)ds

)
dt

]
However, since ∆t is small enough, we do the first-order approximation

p(a, y, x) ≈ β(a, y, x)∆t.

Thus, given (Ai
0, Y

i
0 , X

i
0) we can generate (Ai

n, Y
i
n, X

i
n) by the following hierarchical

model (since they are i.i.d. samples, we forget the i ∈ {1, ..., I} corresponding to each
independent lineage):

Draw independently


Un ∼ Bernoulli(p(An, Yn, Xn))

ρn ∼ k(Yne
λ∆t, ·)

Wn ∼ N (0, 1)

(2.21)

cn = 12<n∆t≤14 (2.22)

Xn+1 = Xne
−θcn∆t + µcn

(
1− e−θcn∆t

)
+ ζcn

√
1− e−2θcn∆t

2θcn
Wn (2.23)

Yn+1 = UnρnYne
λ∆t + (1− Un)Yne

λ∆t (2.24)
An+1 = (1− Un)(An + Yn+1 − Yn) (2.25)

Eq. (2.25) resets the added size at 0 at each division (i.e., when Un = 1), and otherwise
adds the increment of size Yn+1 − Yn, with Yn+1 given by Eq. (2.24). When a division
occurs the size is multiplied by the daughter-to-mother size ratio ρn distributed according
the size-dependent probability kernel k(y, ·) defined in (2.19). Eq. (2.23) corresponds to
the explicit solution of the Ornstein-Uhlenbeck Equation (2.12).

2.7.1 Likelihood of the observations
Let η = (ηX , ηβ, ηk) the vector of parameters considered. From the previous set of equations,
the likelihood of the observations under the considered parametric model is given by

L((Ai
n, Y

i
n, X

i
n, U

i
n)|η) :=

∏
i≥1,n≥1

P((Ai
n, Y

i
n, X

i
n, U

i
n), (A

i
n+1, Y

i
n+1, X

i
n+1, U

i
n+1)|η)

=
∏

i≥1,n≥1

g

(
X i

n+1

∣∣∣∣∣Xne
−θcn∆t + µcn

(
1− e−θcn∆t

)
;
ζ2cn(1− e

−2θcn∆t)

2θcn

)
× k(Y i

ne
λ∆t, Y i

n+1|η)U
i
n (2.26)

×
(
p(Ai

n, Y
i
n, X

i
n|η)

)U i
n
(
1− p(Ai

n, Y
i
n, X

i
n|η)

)1−U i
n
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where g(·|µ;σ2) is the Gaussian probability distribution function of mean µ and variance σ2

and k is given by Eq. (2.19), parameterised by y∗ and c. The division probability p, which
depends on β, is parameterised by v1. In particular the contributions of the parameters
related to k, to β, and to the Ornstein-Uhlenbeck are all independent. This is, the log-
likelihood of the observations can be written as

logL((Ai
n, Y

i
n, X

i
n, U

i
n)|η) =ℓ1((Y i

n, U
i
n)|ηk)

+ ℓ2((A
i
n, Y

i
n, X

i
n, U

i
n)|ηβ)

+ ℓ3((X
i
n)|ηX)

+ constant independent from η

where the log-likelihood of the septum position observations are given by

ℓ1((Y
i
n, U

i
n)|ηk) =

I∑
i=1

+∞∑
M=1

∑
n∈J0,NK:

Y i
n−1≤2My∗,

Y i
n−1>2(M−1)y∗

U i
n log

(
M∑

m=1

1

M
FM
m

(
Y i
n

Y i
n−1e

λ∆t

∣∣∣∣ v)
)
, (2.27)

the log-likelihood of the division times observations is independently given by

ℓ2((A
i
n, Y

i
n, X

i
n, U

i
n)|ηβ) =

I∑
i=1

(
N∑

n=1

U i
n log

(
β(Ai

n, Y
i
n, X

i
n|ηβ)∆t

)
+

N∑
n=1

(1− U i
n) log

(
1− β(Ai

n, Y
i
n, X

i
n|ηβ)∆t

))
(2.28)

and the log-likelihood of the SOS dynamic observations is independently given by

ℓ3((X
i
n)|ηX) =

I∑
i=1

N−1∑
n=0

log g

(
X i

n+1

∣∣∣∣Xne
−θcn∆t + µcn

(
1− e−θcn∆t

)
,
ζ2cn(1− e

−2θcn∆t)

2θcn

)
(2.29)

We see that the likelihoods of the model can be computed explicitly, and we show below
some first numerical results concerning their computation.

2.7.2 Estimation of SOS dynamics parameters ηX
One of the remarkable properties of the Ornstein-Uhlenbeck process is that the three pa-
rameters (θ, µ, ζ) possess explicit Maximum Likelihood Estimators (MLE) [64, 134]. Thus,
using the data from the time interval t ∈]2, 14], in which the cells are under the effect of
the antibiotic, we infer the values of of (θ1, µ1, ζ1). Using the remaining time (pre and post
exposure), we infer the values of (θ0, µ0, ζ0). The results are summarised in Table 2.5. The
estimated parameters show that the presence of ciprofloxacin produces a shift in the mean
value µ of the SOS signal of 10-100 times the basal fluorescence (the values in the table are
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in log-scale), without significantly varying the regulation parameter θ. This could represent
that ciprofloxacin leads to an increased production of the fluorescent marker PsulA, without
altering the average response rates of the SOS regulatory circuit of itself. This is, without
affecting the turning off of the SOS response once the damage is repaired, for example. At
the same time however, the noise of the SOS intensity, conveyed by ζ, is systematically
superior under the effect of ciprofloxacin, which could indicate the presence of other per-
turbations. Nonetheless, the small variations of these parameters points towards a certain
robustness of the SOS response facing the damage caused by ciprofloxacin. Concerning the
variations under different media, we see that the SOS dynamic response is noisier under
fast growing conditions, however it is more tightly controlled by larger values of θ. In par-
ticular, this means that the steady-state of SOS intensity is reached faster in fast growing
media. On the other hand, the mean SOS expression seems relatively constant across the
different media.

Medium
SOS diffusion parameters

θc µc ζ2c
Cip− (c = 0) Cip+ (c = 1) Cip− Cip+ Cip− Cip+

gly 0.217 0.233 4.57 6.01 0.0702 0.103
glu 0.319 0.223 4.60 6.12 0.1074 0.117

gluaa 0.423 0.351 4.53 5.46 0.1439 0.161

Table 2.5: Maximum Likelihood Estimators of the parameters driving the Ornstein-Uhlenbeck Equa-
tion (2.12) for the three differente media, and under the presence or not of ciprofloxacin.

2.7.3 Estimated parameters for the division: adder rate (ηβ) and septum
positioning (ηk)

Contrary to the Ornstein-Uhlenbeck process, the likelihoods ℓ1 and ℓ2 do not allow to obtain
the MLE in close forms. However, ℓ1 and ℓ2 are both numerically tractable and our compu-
tations show that they are convex (see Fig. 2.20), so that the numerical maximisation can
be done by classical approaches.

Fig. 2.20A gives the value of ℓ1 as functions of y∗ and v. We see that the log-likelihood
has convex contour levels, and a unique global maximum. The MLE of y∗ and v are tabulated
in Table 2.6. The MLE of y∗ is approximately given by the mean division size observed in
the control dataset (3.25 µm in gly, 3.53 µmm in glu, and 4.89 µm in gluaa). This comforts
the interpretation of y∗ as a characteristic length. The smallest concentration parameter v is
estimated in the the richest medium, gluaa. This confirms the trend observed in the control
dataset (Fig. 2.7), where the septum position seemed to be less precise in fast growing
media.

Similarly, we can compute the value of ℓ2 (2.28). Fig. 2.20B shows the log-likelihood as
function of the SOS-induced linear factors s1 and q1 multiplying the dispersion parameters
of the Generalised Gamma model (2). The intercepts s0 and q0 were inferred as the MLE
of a Generalised Gamma fitted directly to the added size distributions of the 10% of cells
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Figure 2.20: Log-likelihoods of the parameters of the SOS perturbed adder model. The MLE are
marked ∗. A. Log-likelihood ℓ1 (2.27) of the division size observations as function of the critical
mother length y∗ and the concentration parameter v of the Beta mixture (2.19)-(2.20). B. Log-
likelihood ℓ2 (2.28) of the added sizes at division as function of s1 and q1.

Medium
Division parameters

Adder rate β Septum kernel k
s0† s1 q0† q1 y∗ (µm) v

gly 0.4207 -0.009473 0.7832 -0.1552 3.6896 122.758
glu 0.3019 0.01579 0.5559 -0.1552 3.6896 127.586

gluaa 0.6626 -0.007368 0.6963 -0.2026 5.7586 93.7931

Table 2.6: Maximum Likelihood Estimators of the parameters driving division (the adder division
rate B and the mother-to-daughter ratio kernel k) for the three differente media. Parameters marked
by † are inferred by fitting a Generalised Gamma distribution directly to the added size distributions
of the first SOS decile of control cells.
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with lowest SOS signal at division of the control dataset. The numerical computations show
that ℓ2 also has convex contours and a unique global maximum. All the inferred parame-
ters are tabulated in Table 2.6. In all three media the multiplicative noise effect conveyed
by s1 is much less significant than the shape change effect conveyed by q1. Moreover, q1
increases with the richness of the medium. This confirms that the perturbative effect of the
SOS response on the adder control is stronger in fast growing conditions, supporting the
experimental observations of Fig. 2.12.

To see more clearly the effects of s1 and q1 in the division dynamics we calculate the
division rates B(·, x) predicted by the MLE for different values of x in all three media,
presented in Fig. 2.21. First, the expected result that the division rate is lower in richer
media, as found previously in Fig. 2.6, holds still. There is, however, a notorious effect of the
SOS level. In all three media, increasing the SOS level leads to lower division rates, perfectly
compatible to the fact that the SOS response induces the delay of division. Relatively to
each medium, the strength of this inhibition seems to be stronger in poorer media, where
the division rates in absence of stress are generally stronger. In other words, it seems
that the adder size control is more sensible to stress in poorer conditions. This comforts
the results of [82], that the fraction of cells with high SOS level is larger in slow growth
conditions. Not only the value of the division rate is changed, but also its shape. At low
SOS level, in all three media, the most likely division rate is a increasing function. Indeed,
the intercept parameters s0 and q0 (see Table 2.6) are all three in the "increasing" region
of the parameter space represented in Fig. 2.17. At first glance, this seems to contradict
the selection of a lognormal distribution in Section 2.4, and the decreasing division rate for
longer cells found by Osella et al. [117]. However, as x increases the division rate changes
its shape, and tends in all three media towards an arc-shaped "lognormal-like" distribution,
similarly to the path A followed at the right panel of Fig. 2.17. The apparent contradiction
emerges from the fact that, both our first analysis and Osella’s et al., measure the division
rate as function solely of the added size (the absolute size in Osella’s et al.). Yet, by doing so,
we are implicitly marginalising over all the unknown individual variables that might have an
effect. This is similar to the problem of random effects in the Mixed Effect Models literature
[97]. Indeed, if starting from B(a, x) we wanted to obtain a real adder division rate B̄(a),
function of a only, we can compute, from (2.15),

B̄(a) =
d

da

(
− log S̄(a)

)
,

where S̄ is the population survival function given by

S̄(a) = P (Adiv ≥ a) = E
[
exp

(
−
∫ a

0

B(a,Xτ(a))

)
da

]
,

where the expectation is taken over the Ornstein-Uhlenbeck processX and τ(a) = λ−1 log(1+
y−1
0 a) is the time needed to reach an added size a given the birth size y0. Hence, under suit-

able integrability assumptions for S̄ we can differentiate under the expectation sign and
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Figure 2.21: Predicted adder division rate B(a,X) by MLE.

then

B̄(a) =
E
[
B(a,Xτ(a))e

−
∫ a
0 B(s,Xτ(s))ds

]
E
[
−
∫ a

0
B(s,Xτ(s))ds

] = E
[
B(a,Xτ(a))

∣∣Adiv ≥ a
]
̸= E

[
B(a,Xτ(a))

]
.

(2.30)
This relation puts in evidence a bias on B̄(a). Only the individuals that have yet not divided
at added size a contribute to the value of B̄(a). Therefore, if only cells with very high SOS
intensity x survive until longer added sizes, and the conditional division rateB(a, x) is lower
for high x, then the marginal rate B̄(a) will be lower for larger a, producing an "effective
catastrophe" region in B̄, even if B(a, x) were not decreasing themselves. In our case, if
the stress is low enough, division rates are monotonically increasing (as one naively might
expect for a homeostatic system: the more size that has been added, the more likely should
the cell divide). And, if the stress is high enough they tend towards a characteristic arc-
shaped division rate. In other words, our findings suggest that it is the stressed bacteria that
might inadvertently produce an apparent depression of the division rate when measuring it
with population-level statistics.

2.8 Simulation results with the fitted parameters

Finally, using the MLE of η, we simulated single-cell lineages that we compared to the MM
original data. The results of the simulations of I = 104 independent lineages are given in
Fig. 2.23.

Concerning the SOS dynamics, the predictions of Eq. (2.12) using the parameters ηX
given by Table 2.5 are shown in Fig. 2.22. Panel A of the figure shows the predicted
mean SOS intensity in time (dashed line) and compares it to the empirical mean (solid line).
We see an excellent qualitative agreement between the two curves. We notice however a
systematic shift of the prediction towards the right. This could represent a delay in the SOS
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Figure 2.22: Fitting results of the SOS dynamics using the Ornstein-Uhlenbeck model (2.12):
dynamic and stationary. A. In solid lines, empirical mean of the SOS intensity calculated from the
grey trajectories in the background. Only lineages with observed divisions were retained. In dashed
lines, the mean SOS intensity predicted by Eq. (2.12) using the parameters summarised in Table
2.5. B. In solid lines, empirical steady-state distribution of the SOS intensity under ciprofloxacin,
obtained from the data observed between t = 10 and t = 14 (last 4 hours of cip treatment, 8 hours
after initial dose). In dashed lines, stationary distribution expected from the Eq. (2.12) using the
parameters summarised in Table 2.5. C. Comparison of the empirical fluorescennse observations
(first row) and the simulated trajectories of (2.12) using the MLE.
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response that is not captured by the Ornstein-Uhlenbeck process, which models a rather
instantaneous regulation. However, these fast regulation dynamics seem to recover well the
dynamic transition at times t = 2 and t = 14. In particular, the Ornstein-Uhlenbeck model
recovers very accurately the shape of the inflexion observed at this regime change. We see
also that, as already discussed above and as is shown by the values of θ in Table 2.5, the
steady-state is reached faster in fast-growing media.

Panel B of Fig. 2.22 shows the empirical (solid line) and predicted (dashed line) steady-
state distributions of SOS intensity under the effect of ciprofloxacin. Indeed, the Ornstein-
Uhlenbeck process (2.12) is stationary, and its stationary distribution is explicit: a Gaussian
of mean µ and variance ζ2/(2θ). We see also an excellent qualitative agreement in the steady-
state distribution, particularly around the mean value, except for glucose medium, whose
distribution is wider than the predicted Gaussian. In general, the observed distributions
are more skewed to the left. This can be explained by the fact that the Ornstein-Uhlnebeck
process imposes a symmetrical noise around the mean value, while the observations show
that cells, even under ciprofloxacin, tend to concentrate below the expected value. At the
same time, but more rarely, some lineages can induce very strongly the SOS response,
which also widen the distribution towards the right.

Concerning the division dynamics, Fig. 2.23A shows that the asymmetric division
statistics are well recovered by our Beta mixture model. Although the transition bound-
aries determined by y∗ are less marked in the empirical observations, suggesting some non
captured individual heterogeneity. Finally, Fig. 2.23B-D shows the joint distributions of
size and SOS response averaged in time. The bulk of the distribution seems well recovered,
particularly during the presumed stationary reached after 12 hours of antibiotic treatment
(Panel D). However, some rare events associated to excessive filamentation seem not be cap-
tured by the model. This also might indicate the presence of individual heterogeneity in the
parameters of the division rate, that cannot be explained only by the SOS measurements.

2.9 Concluding remarks

2.9.1 Some perspectives

We have proposed a parametric model of the perturbative effects of ciprofloxacin-induced
SOS response over the adder model of size control in E. coli. Our findings coincide with the
previous observations that the adder model is robust to various growth inhibitions [129].
In contrast, we have found that the SOS response, which is known to have multifactorial
physiological effects, induces a loss of size control, translated in broader distributions of
the added size at division, while keeping the median relatively constant. In terms of the
division rate, we have shown, using a parametric Generalised Gamma model, that the adder
division rate function B is reduced by the SOS response in a medium-dependent way. In
particular, the previously observed catastrophe or decreasing regions in the division rate
can be explained quantitatively by the contribution of high SOS individuals in division ar-
rest. We have seen however that the experimental heterogeneity of the joint SOS and size
distributions is still more important than our model predicts. In this sense, one interest-
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Figure 2.23: A. Data and simulations of ρ ∼ k(·|y) (septum position given the mother size) for
I = 100 independent lineages and the MLE as parameters (glucose+aa medium, where a larger
number of possible septa can be observed). B-D. Data and simulations of the joint distributions of
the SOS level at division and the division size. B is the time average over the whole experiment, C
is during the first 2 hours, and D during the last 4 hours of cip exposure (10 ≤ t < 14).

ing axis of future work might be the extension of our model to include mixed effects [97],
this is, to allow individual heterogeneity in the parameters of the probability distributions
of the model. For instance, this could enable having a Generalised Gamma model at the
population level (the fixed effects) consistent with the idea that the adder is robust in aver-
age, but with some parameters that can have some variability among the individuals (the
random effects). Further, this could also enable to statistically test the heterogeneity of the
population. Mixed Effects Models are extensively used to model individual-based responses
in pharmacokinetics, for example, where the evolution of the drug in time is driven by a
deterministic ODE. The extensions required to adapt the method to a stochastic diffusion
process, as our Ornstein-Uhlenbeck model, which is moreover coupled to the also stochastic
process of cell division, are not trivial, see for example [41].
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Chapter 3

V -uniform ergodicity of a general

adder proliferation model

This chapter is based on the article "Exponential Ergodicity of a Degenerate Age-Size
Piecewise Deterministic Process”, published in Acta Applicandae Mathematicae [103].

Abstract. We study the long-time behaviour of a non conservative piecewise
deterministic measure-valued Markov process modelling the proliferation of an
age-and-size structured population, which generalises the “adder" model of bac-
terial growth. Firstly, we prove the existence of eigenelements of the associated
infinitesimal generator, which are used to bring ourselves back to the study of a
conservative Markov process using a Doob h-transform. Finally, we obtain the
exponential ergodicity of the process via drift-minorisation arguments. Specif-
ically, we show the “petiteness" of the compact sets of the state space. This
permits to circumvent the difficulties encountered when trying to construct mix-
ing trajectories at a fixed uniform time on an unbounded two-dimensional space
with only advection and degenerate jump terms.

3.1 Introduction
The need to include age as a structuring variable in the description of population dynam-
ics has come to be a useful strategy for modellers searching to account for non-Markovian
behaviours in a Markovian setting. In particular, in the context of biological applications,
the arising of high-throughput single-cell techniques has allowed microbiologists to follow
heterogenous populations of isolated bacteria (where the structure is given by their length,
biological markers or any other observable) through time. Thereby, this also grants access
to the age structure and has put in evidence the non-trivial dependence of age and other
observables at the individual and population scales. The most recent models of bacterial
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growing include then some sort of age variable, which might not correspond exactly with
the chronological age, but which might rather evolve in time as a function of the individual
traits. For example, in the adder model of bacterial growth discussed in Example 3.1.1
below, the age corresponds to the length added from the birth of the individual, so it grows
along with the size variable, but resets at 0 at each reproduction event. This age variable
still obeys a renewal equation, which justifies nonetheless its name. In this regard, an
important biological and mathematical question concerns the long-time behaviour of such
dynamics: whether a certain steady-state distribution exists and the convergence rate to-
wards it. Biologically, it allows to explain the observation of homeostatic behaviours in
experimental timescales. Mathematically, it corresponds to the non trivial task of extending
classical stability results to a broader class of stochastic models, by studying the spectral
and ergodic properties of a certain family of operators.

In this spirit, we study the long-time behaviour of a stochastic process modelling non-
conservative population dynamics which are formalised as a measure-valued process (Zt)t≥0

with values in the point measures over R2
+,Mp(R2

+), which represents the age and size of
the individuals. For every instant t > 0 we can write

Zt =
∑

i≤⟨Zt,1⟩

δxi
, (3.1)

where xi = (ai, yi) denotes the vector trait of individual i, consisting in its age ai and size
yi. We assume that each cell in the population behaves independently. The population then
evolves in the continuous time through two fundamental dynamics: growth and division.
Whilst growth is assumed to be deterministic, the division mechanism will account for the
observed stochasticity. We present below informally the main characteristics of these two
ingredients, which are formalised in Section 3.3:

• Growth and ageing: Between reproduction events, the variable x evolves following
the deterministic ODE

x′(t) = g(x(t)).

The function g : R2
+ → R2

+ represents the growth rate of the size and age coordinates.
We denote x 7→ φt(x) the deterministic flow induced by the ODE with initial condition
x (see Lemma 3.3.1 for the details), this is, the age and size at time t of an individual
of age and size x at time 0. For example, if a coincides with the chronological age,
and y grows exponentially at rate λ, we will have g(a, y) = (1, λy) and φt(a, y) =
(a+ t, yeλt). More interestingly, age and size can evolve in a dependent way. It is the
case in Example 3.1.1 discussed further below: the adder model of bacterial growth.
There, the age corresponds to the size added since the last division, so that age and
size grow at the same rate. Therefore, if y grows exponentially at rate λ, we have
g(a, y) = (λy, λy) and φt(a, y) = (a+ yeλt − y, yeλt).

• Reproduction: Individuals divide independently. An individual of birth state x =
(a0, y0) at time t0 will reproduce at a random time t0 + T , where T is distributed
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according to

Px (T ≥ t) = exp

(
−
∫ t

0

β(φs(x))ds

)
.

The function β : R2
+ → R+ is called the reproduction rate. The value of β(a, y) gives

the infinitesimal probability by unit of time for an individual of age a and size y to
reproduce. Then, when an individual of state x reproduces, it gives birth to new indi-
viduals of age 0 and random sizeZ, that depends on the value of x. The probability dis-
tribution of Z conditional to x is characterised by the transition kernel k : R2

+ → R+,
which is a positive integrable function. Thus, the number of new individuals of size
z produced by an individual of state x is proportional to k(x, z)dz. In particular, the
value of the integral

∫ +∞
0

k(x, z)dz gives the total offspring produced by that individ-
ual. The age variable, on the other hand, resets at 0 at each jump. This means that
the transition kernel over R2

+ is degenerate, of the form x 7→ δ0(da)⊗ k(x, z)dz.

Following the approach introduced by [57, 140], by using a pathwise representation of
Zt with respect to a Poisson point measure, we can prove that for every f ∈ C1,1

b (R2
+), Zt

decomposes as a semi-martingale of the form

⟨Zt, f⟩
def
=

∫
R2
+

f(x)Zt(dx) = ⟨Z0, f⟩+
∫ t

0

⟨Zs,Qf⟩ ds+ M f
t , (3.2)

where M f
t is a squared-integrable martingale, and Q is given for every f ∈ C1,1

b (R2
+) by

Qf(x) = g(x)⊤∇f(x) + β(x)

(∫ ∞

0

f(0, z)k(x, z)dz − f(x)
)
∀x ∈ R2

+ (3.3)

In the following, we consider the extended version of the generator Q (see for example
Section 20.3.2 of [112]), associated to a domain D(Q) in which the integral term is well
defined. We recall that a function f is said to be in the domain of the extended generator of
Q if there exists a measurable function u such that(

⟨Zt, f⟩ − ⟨Z0, f⟩ −
∫ t

0

⟨Zs, u⟩ ds
)

t

is a local martingale. In that case we will write Qf = u. This is a natural definition since
our starting point is the decomposition (A.48).

Example 3.1.1 (The adder model). In the particular case of the bacterial proliferation
model that interests us, and that will be studied in Section 3.6, we consider the dynamics
of an age-size-structured population of E. coli bacteria as a measure-valued process
with values in Mp(X ), the point measures over the state space X = {(a, y) ∈ R2

+ :
0 < a < y, y > 0}, where a represents the added size and y the current size of each
cell. This is, the age of a cell is given by the difference between its current size and
its initial size. Therefore, the variable a is not a chronological age, and has actually
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length units. However, it is indeed a variable that increases with time and is reset
to zero after reproduction events. The importance of considering the added size as
a structural variable to accurately model the growing dynamics of E. coli has been
strongly suggested in the recent years by experimental works and statistical analysis in
unperturbed conditions [133, 44], but also in the case where the growth is perturbed
by anti-DNA antibiotics (unpublished work by J. Broughton, M. El Karoui, S. Méléard
and the author). The dynamics are driven by the generator

Qf(a, y) =λy (∂a + ∂y) f(a, y)

+ λyB(a)

(
2

∫ 1

0

f(0, ρy)F (ρ)dρ− f(a, y)
)
− d0f(a, y). (3.4)

In our previous notation this translates as g(a, y) = (λy, λy), β(a, y) = λyB(a), and
k((a, y), z) = 2 1

y
F
(

z
y

)
1z≤y, where F has support in [0, 1]. The growth dynamics cor-

respond to an exponential elongation at constant rate λ > 0. The second term in Q
represents the divisions, which occur at rate λyB(a) where B is a hazard function such
that for every individual,

P (Added size at division ≥ a) = exp

(
−
∫ a

0

B(s)ds

)
.

Hence, the jump term reads as follows: a cell of size y and added size a divides at
rate λyB(a), and is replaced by two cells of added size 0 and sizes ρy and (1 − ρ)y
respectively, where ρ is randomly distributed following the density F . The third term
represents deaths at a constant rate d0 > 0.

In the following we will study the much general model generated by (4.19).

Our goal is to obtain the long-time behaviour of the first-moment semigroup Mtf(x) :=
E [δx] ⟨Zt, f⟩, which describes the expected behaviour of the population. In particular, we
prove a Malthusian behaviour:

Mtf(x) = h(x)eλt ⟨π, f⟩+O
(
e(λ−ω)t

)
, (3.5)

which shows the convergence of e−λtMt towards a unique stationary measure π at an ex-
ponential rate. The parameter λ > 0 is called the Malthus parameter and represents the
growth rate of the population, so that e−λt allows to rescale the mean population size as
t→ +∞. The function h propagates the effect of the initial structure of the population. The
constant ω indicates the convergence rate towards π.

Different methods have been developed during the recent years to prove this behaviour:
spectral methods, as reviewed in [114] (see for example [122] for an application to a close
model); others based on the study of the associated semigroup by Harris’ theorem as pro-
posed in some general frameworks by [10, 31, 11] with recent applications in the models
considered by [20, 138, 35]. We will follow the latter methods, using the criteria estab-
lished by Meyn and Tweedie [111], namely: a petite-set condition (H1) and the existence of
a Lyapunov function (H2), as given in Theorem 3.2.1. This methods present an alternative
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to PDE techniques, where criteria based on the probabilistic control of moments replace the
harder to obtain Poincaré-type inequalities.

We explore two directions left open in the previous applications, which represent also
the sources of our major technical issues: first, the bi-dimensionality of the dynamics,
and second, the degeneracy of the transition kernel. Indeed, the underlying stochastic
process consists on unidimensional trajectories over a two-dimensional space. Hence, to
uniformly bound in probability the region explored by these trajectories with respect to a
non-degenerate measure is not trivial. Similar difficulties have been found for other two-
dimensional models such as [56, 139, 36]. Here, we propose to construct explicit trajec-
tories and to average them in time with respect to a nice sampling measure. The inclusion
of time sampling allows to compensate the lack of stochasticity of the degenerate jump-
transport dynamics on an unbounded state space. Indeed, it is not trivial to find a fixed
time t0 > 0 such that the trajectories originated from any initial state mix uniformly on the
support of some non-trivial measure of the unbounded two-dimensional space X . However,
if we authorise the time t0 to be sampled from some probability distribution, chances are the
uniform exploration of the space will be easier to prove, as we show indeed later. More tech-
nically, the utilisation of a petite-set condition instead of a small-sets one is key to obtain
the convergence in this setting.

Moreover, compared to the previous works mentioned above, the probabilistic framework
brings naturally to work with the operator Q instead of its dual, as in the more classical
PDE settings. Thus, this work lies also in the framework of measure solutions as rigorously
developed for example in [61] for the one-dimensional conservative case. Moreover, only
the existence of eigenelements for Q is needed to be able to compute the Doob h-transform
and use Harris’ theorem. Then, the existence of the direct eigenfunction associated to the
classical PDE is a consequence of our main result. Our method is then in the spirit of [31],
where the authors could exploit known results of existence of the dual eigenelements in the
one-dimensional case provided by [9, 43]. In our case, we will have to adapt the latter to
the two-dimensional degenerate case studied here.

In particular, we will apply our method to determine the exponential convergence to-
wards a stable size distribution in a bacterial proliferation model called the adder model [133,
100, 70, 62]. Individual cells are structured by their added size a which renews to 0 at
each division, and their size y which evolves deterministically at exponential rate. The
existence of a steady-state distribution and its form was already known since [70], how-
ever the exponential convergence could not be obtained using entropy methods by [62].
Since the eigenelements of the generator are known in this case, by the direct application
of Theorem 3.2.1, our method permits to obtain the exponential convergence while evad-
ing technical issues linked to the lack of compactness of the model, which make a classic
treatment by PDE and hypocoercivity methods harder to prove and less general.

Finally, it is worth noticing that other models share similar dynamics with the ones
generated by (4.19). In an unrelated context, but fairly similar setting, Piecewise Deter-
ministic Markov Processes (PDMP) have been recently used to sample target distributions
in the framework of Markov Chain Monte Carlo (MCMC) methods, as described for example
in [52]. There, an important task is to show good convergence rates of the MC-PDMP to-
wards the target stationary distribution. Methods relying on drift-minorisation conditions,
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similar to conditions (H1) and (H2) of Theorem 3.2.1, have been proven useful in that
context [16, 38, 60], where issues related to dimensionality and degeneracy might also be
encountered. Notice however that the processes considered in all these contexts are always
conservative.

Other biological models can also be generated by similar semigroups, so their spectral
and ergodic properties might be deduced from our results. For example, the non-trivial
uniform bound estimate for the population growth rate established in Step 5 of the Proof of
Proposition 3.4.1 relies mainly in the assumption that the newborn sizes are almost surely
smaller than the parent size, without any additional requirements for the form of the kernel
k. In particular, we do not require conservation of mass y =

∫
k((a, y), z)dz, as in classical

size-structured models [43]. Therefore, the same arguments can be used in general age-
trait models that authorise only negative jumps for the trait coordinate. Biologically, this
could account for a trait evolving deterministically, and which is almost surely eroded or
corrupted at each reproduction event. This is the case, for example, in some telomere-
shortening models [22]. In particular, Assumptions 3.6.1 give necessary conditions such
that the growth rate g compensates the fragmentation events arriving at each reproduction,
in order to preserve ergodicity.

3.2 Malthusian behaviour
We are interested in the average dynamics as given by first-moment semigroup Mt defined
for every test function f ∈ C1,1b (R2

+) by:

Mtf(x) := E [⟨Zt, f⟩ |Z0 = δx] ∀x ∈ R2
+ (3.6)

Using Markov’s property it’s easy to see that Mt verifies the semigroup property. However
it is not a Markovian semigroup since it does not necessarily preserve mass (we say it is non
conservative). Moreover, using the semi-martingale decomposition (A.48), we verify that
Mt is the semigroup associated to the extended generatorQ. This is, for every test function
f ∈ C1,1(X ), it is the weak solution of Kolmogorov’s equations

∂tMtf =MtQf = QMtf. (3.7)

Moreover, for any finite measure µ we define the dual semigroup as the measure νMt given
by:

(νMt)f := ν(Mtf) =

∫
X
Mtf(x)ν(dx)

So by definition we have (µMt)f = µ(Mtf) which we write as µMtf .
Our main result states the Malthusian behaviour of the semigroup by means of Har-

ris’ Ergodic Theorem as stated in Theorem 6.1 of [111], which we recall below in Theo-
rem 3.2.1.

Theorem 3.2.1 (V -uniform Ergodic Theorem (also known as Harris’ Ergodic Theorem)
(Theorem 6.1 of [111])). Let (Xt)t be a right-continuous Markov process with values in

84



3.2. MALTHUSIAN BEHAVIOUR

some locally compact separable metric space E equipped with its Borelian set B(E), and let
A be the infinitesimal generator of X. We call Pt the associated transition semigroup. If the
two following conditions are verified:

(H1) Minorisation condition for compact sets.

All compact sets of E are petite for a skeleton chain ofX. This is, for every compact set
K ⊂ E there’s a probability mass distribution µ = (µn)n∈N over N and some ∆ > 0
such that there exists a non-trivial measure ν (which might depend on ∆ and µ) over
B(E) that for every x ∈ K gives the following lower bound:

⟨µ, δxP·f⟩ =
∑
n∈N

µnPn∆f(x) ≥ ⟨ν, f⟩ .

(H2) Foster-Lyapunov drift condition.

There exists a coercive function V , meaning that V (x) → +∞ as ||x|| → +∞, such
that V (x) ≥ 1 for all x, and there exist some c > 0, d <∞ such that

AV (x) ≤ −cV (x) + d ∀x ∈ E,

Then, there exist a unique non-trivial probability measure π and C, ω > 0 such that for
every x ∈ E and t ≥ 0

||δxPt − π||V ≤ CV (x) exp(−ωt), (3.8)

where the V -norm defined by

||µ||V := sup
g:||g||≤V

|⟨µ, g⟩|

is an extension of the total variation norm. In particular ||µ||1 = ||µ||TV.

Remark 3.2.2. The reader familiar with other versions of V -uniform ergodicity theorems,
such as Theorem 20.3.2 of [112], the results of [48], or more the more recently derived
version of [69] might find that conditions (H1) and (H2) are written in a slightly exotic way,
even thought they are extracted without much modification from source [111]. We address
briefly these potential concerns. First, it is worth noticing that petiteness condition (H1) is
stressed for a skeleton chain on the process and not for the continuous-time process. This
allows to circumvent issues related to periodicity. A classical pathological example is the
clock process, defined by the deterministic semigroup Ptf(x) = f(xe2πit), for x ∈ S1 = {z ∈
C : |z| = 1}, t ≥ 0. It consists on periodic orbits along S1. Since even irrational skeleton
chains are not mixing, it is not possible to establish a uniform minorisation condition valid for
all starting points of any fixed compact set K of S1. Condition (H1) is therefore not verified
by the clock process. Notice, however, that for the uniform sampling measure µ(dt) =
1[0,1](t)dt, the continuous-time semigroup Pt does verify Doeblin condition ⟨µ, δxP·⟩ ≥ ν, for
all x ∈ S1, with ν the uniform measure over S1. Thus the importance of testing petiteness
for the skeleton chains.
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Second, condition (H2) is usually stated with an indicator function over some petite set
C, this is, as

AV ≤ −cV + b1C , (V4)

called drift condition (V4) in [112] and many later works. Indeed, from Section 5 of [48],
it can be shown that if the function V is unbounded off petite sets, i.e., if for every n ∈ N, the
set {x ∈ X : V (x) ≤ n} is either empty or petite, condition (V4) is equivalent to (H2). In
our case, since V is coercive and that by (H1), all compact sets are petite for some skeleton
chain, we have that V is unbounded off petite sets for that skeleton chain, and therefore an
equivalent discrete-time version of (V4) is verified for the skeleton (condition (DT ) of [48],
p. 1679). Theorem 5.1 of [48] shows finally that (DT ) and (V4) (called (D̃) therein) are
actually equivalent.

Notice that we need a Markovian (conservative) semigroup. To overcome this problem,
similarly as in [31], we perform a so-called Doob h-transform, to obtain a conservative
semigroup Pt with the dynamics of Mt. To do so, we require first to have some pair (λ, h)
such that Qh = λh and h > 0. Then, using such pair we define

Ptf(x) :=
Mt(hf)(x)

eλth(x)
. (3.9)

Then we can come back the ergodic behaviour of (Mt)t≥0 by looking at the limit of Mtf =
eΛthPt (f/h). In particular, the generator associated with Pt is given explicitly by Eq.
(3.10).

Proposition 3.2.3. Suppose the existence of a pair (λ, h), λ > 0, h > 0 such that Qh =
λh. Then, Pt defined by Eq. (3.9) is a positive Markovian semigroup whose infinitesimal
generator is given for f ∈ C1,1

b (R2
+) by

Af(x) = g(x)⊤∇f(x) + β(x)

(∫ ∞

0

[f(0, z)− f(x)] h(0, z)
h(x)

k(x, z)dz

)
∀x ∈ R2

+ (3.10)

Proof. By definition and evaluating at t = 0 we have:

Af(x) = ∂

∂t
Ptf

∣∣∣∣
t=0

(x)

=
MtQ(hf)
eλth

− λMt(hf)

eλth

∣∣∣∣
t=0

(x)

=
Q(hf)(x)
h(x)

− λf(x)
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Then, using the value of Q applied to hf and that Qh = λh we get

Q(hf)(x)
h(x)

=
f(x)

h(x)
g(x)⊤∇h(x) + g(x)⊤∇f(x) + β(x)

(∫ ∞

0

h(0, z)f(0, z)
k(x, z)

h(x)
dz − f(x)

)
=
f(x)

h(x)

(
g(x)⊤∇h(x)− β(x)h(x)

)
+ g(x)⊤∇f(x)

+ β(x)

∫ ∞

0

h(0, z)f(0, z)
k(x, z)

h(x)
dz

=
f(x)

h(x)

(
λh(x)− β(x)

∫ ∞

0

h(0, z)k(x, z)

)
+ g(x)⊤∇f(x)

+ β(x)

∫ ∞

0

h(0, z)f(0, z)
k(x, z)

h(x)
dz

= λf(x) + g(x)⊤∇f(x) + β(x)

∫ ∞

0

[f(0, z)− f(x)] h(0, z)
h(x)

k(x, z)dz

Finally, subtracting λf(x) we obtain the form of generator A.

Hence, the work is structured as follows: first, in Section 3 we prove the existence of a
pair (λ, h) which solves the eigenvalue problemQh = λh under the Assumptions 3.3.3. The
same set of assumptions allows us to prove the Doeblin condition (H1) in Section 4. We do
not provide a general Foster-Lyapunov condition (H2), suitable for our general case. How-
ever, we show its existence in our application to a growth-fragmentation model in Section 5.
This last model has already been studied since the works of [70], and the exponential con-
vergence has been recently shown in [62] using Generalized Relative Entropy techniques.
Here, we show that the knowledge of the eigenelements (λ, h) for the generator allows to
provide a simpler proof of convergence using Harris’ theorem. Indeed, the arguments pre-
sented in Section 3.4 can be avoided when the existence of eigenelements is known apriori,
which might be the case in several practical applications. Nonetheless, our general method
allows us to give an answer to one of the perspectives listed by [62], who couldn’t gener-
alise their argument in the case of a general drift function g. Thus, our main result reads
as follows:

Theorem 3.2.4 (Exponential ergodicity). Under Assumptions 3.3.3 and if the Lyapunov-
Foster condition (H2) of Theorem 3.2.1 is verified for some coercive function V : R2

+ → R+,
there is a unique probability measure π such that there exist constants C, ω,Λ > 0 which
verify for every initial condition µ0 ∈Mp(R2

+)

||e−Λtµ0Mt − ⟨µ0, h⟩ π||V ≤ C ⟨µ0, V ⟩ e−ωt. (3.11)

Moreover, π is absolutely continuous with respect to the Lebesgue measure.
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3.3 Preliminary definitions and assumptions
We begin by recalling some useful properties of the deterministic flow, which are classical
results for an autonomous system of first order ODE (refer for example to Theorem D.1
of [98]):

Lemma 3.3.1 (Flow properties and notations.). Let x ∈ R2
+. Consider g = (g1, g2) ∈ C1(R2

+)
and suppose that g1 > 0. The autonomous first-order system of Ordinary Differential Equa-
tions (ODE)

du(t)

dt
= g (u(t)) , t ∈ R

u(0) = x
(3.12)

defines a unique flow φt : X ∋ x 7→ φt (x) ∈ X which is the solution u(t) of (3.12)
at time t with initial condition x ∈ X where X =

⋃
y≥0 Γ

+
(0,y) where Γ+

x will be defined
below. We write φt = (φt

1, φ
t
2) for the marginal flows of the age and size. We define then

Γ+
x = {φt(x), t ≥ 0} and Γ−

x = {φt(x), t ≤ 0} and call Γx = Γ+
x ∪Γ−

x the unique orbit passing
through x. Moreover:

1. The flow is a group in the time variable: φtφs = φt+s = φsφt, φ0 = Id, and has inverse
(φt)

−1
= φ−t, which is the solution to the ODE u′(t) = −g (u(t)).

2. The flow depends smoothly on the initial conditions: ∀t ∈ R, φt ∈ C1(R2
+). We call

Dφt(x) the Jacobian matrix of the flow with respect to the initial condition.

3. For all fixed x = (a0, y0) ∈ X , if g1 > 0, then there is a unique function Yx : R+ → R+

such that for all (a, y) ∈ Γx, we have Yx(a) = y. This represents the size at a given age
of an individual with initial condition x. In other words, for all t ≥ 0,

φt (x) = (a(t), Yx(a(t))) .

Moreover, Yx ∈ C1(R+) and it is solution of the first order one-dimensional ODE

Y ′
x(a) =

g2(a, Yx(a))

g1(a, Yx(a))
; Yx(a0) = y0

Analogously, one defines its inverse function Ax(y) which gives the age at size y for
an individual with initial condition x, and hence verifies

φt (x) = (Ax(y(t)), y(t)) , t ≥ 0.

4. For all fixed x ∈ X , we write ϕx(t) := φt(x) as a function of time (from R to R2
+).

Then, the inverse function ϕ−1
x : Γx → R such that ϕ−1

x (ϕx(t)) = t is well defined. For
every x0 ∈ X and x1 ∈ Γx0 we read ϕ−1

x0
(x1) as the time needed along Γx0 to go from

x0 to x1. Moreover if we write x0 = (a0, y0), x1 = (a1, y1), this quantity is given by

ϕ−1
x0
(x1) =

∫ a1

a0

1

g1 (a, Yx0(a))
da =

∫ y1

y0

1

g2 (Ax0(y), y)
dy.
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Importantly, for the set of assumptions given below, we have 0 < ϕ−1
x0
(x1) <∞ for all

x0 ∈ X \ {0} and x1 ∈ Γx0.

Let us also consider the following probability space which well be useful to compute and
interpret some of the estimates which will be obtained below.

Definition 3.3.2. Consider a probability space (R+,B(R+),Px) in which the random couple
(T, Z) ∈ R+×R+ gives the first jump time T and size Z after this first jump of a trajectory
beginning at x ∈ X . Hence, for all x ∈ X , the couple (T, Z) has joint probability density

px(t, z) =
1

Cx

k(φt(x), z)ψ(t|x),

where the normalisation constant is given by

Cx =

∫ ∞

0

∫ ∞

0

k(φt(x), z′)ψ(t|x)dtdz′,

which is the mean number of offspring produced by an individual of initial configuration x
after its first jump, and

ψ(t|x) = β(φt(x)) exp

(
−
∫ t

0

β (φs(x)) ds

)
is the marginal probability density of the time of the first jump, conditionally to the initial
configuration x, and which is well defined for the set of assumptions given below. We write
Ex the associated expectation. Fig. 3.1 summarises the definitions introduced in this section.

x

Γ+
x

0

Z

a

y

T φT (x)

X
(T, Z) ∼ px

Γ−
x

Yx(0)

Figure 3.1: Flow notations introduced in Lemma 3.3.1 and the probabilistic definition of the random
couple (T,Z) introduced in Definition 3.3.2.

Now, let us consider the following set of assumptions, whose biological meaning and
implications are commented below.

Assumptions 3.3.3. Assume that we have
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(i) Smooth and uniformly controlled flow: g = (g1, g2) ∈ C1(R2
+), g1 > 0 and there are

some constants c0, c1, c2 > 0 such that for all (a, y) ∈ R2
+

g1(a, y) ≥ c0 a, g1(a, y) ≤ c1(1 + a), g2(a, y) ≤ c1(1 + y),

|∂agi(a, y)| ≤ c2(1 + a+ y), |∂ygi(a, y)| ≤ c2(1 + a+ y).

and for all y > 0, a ≥ 0, we have g2(a, y) ≤ g2(0, y).

(ii) Regular reproduction rate: β ∈ C(R2
+,R+), and B = β/g1 ∈ C(R2

+), such that there
are constants a∗, β−, β+ > 0 s.t. for all a > a∗y ≥ 0, β− < B(a, y) < β+, and
B(a, y) = 0 for all a ≤ a∗.

(iii) Regular transition kernel: For all z ≥ 0, x 7→ k(x, z) is a continuous function on R2
+,

and for all x ∈ R2
+, z 7→ k(x, z) is a continuous function on R+. The total offspring

of individuals of trait x is ||k(x, ·)||1 :=
∫ +∞
0

k(x, z)dz with 1 < ||k(x, ·)||1 ≤ K̄ for all
x ∈ R2

+. In particular, we consider two distinct cases:

a) Fragmentation kernel: For all a ≥ 0, supp k(a, y, ·) ⊆ (0, y).

b) Compactly supported mutational kernel: It exists a compact set S ⊂ R+ such
that for all a ≥ 0, supp k(a, y, ·) ⊆ S, and some interval I ⊂ R+ and ϵ0 > 0 such
that for all y ∈ S and z ∈ S ∩Bϵ0(y), the open ball of radius ϵ0 around y, we have
I ⊂ {a > 0 : β(a, y)k(a, y, z) > 0}.

(iv) Lower bounded transition kernel: For all fixed value of z > 0, there exists some non-
empty open interval D(z) with length bounded between δ− and δ+, both independent
of z, and a positive value ε(z) such that for all x ∈ R2

+, k(x, z) > ε(z)1D(z)(x).

We comment on the meaning of these assumptions. Assumption 3.3.3-(i) ensures that
the size and age do not explode in finite time. The control on the derivatives will also allow to
control the influence of the initial conditions on the flow (Lemma 3.1.2). Assumption 3.3.3-
(ii) allows to write the division rate as β(x) = g1(x)B(x) where function B should be
interpreted as an “age hazard rate", a generalisation of the adder division rate introduced
in Example 3.1.1. Thus, we allow ourselves to have unbounded division rates, provided
that the age hazard rate B is bounded, which will allow to control nonetheless the law of
ages at division. Biologically this has been interpreted as individuals not perceiving actual
time, but rather their own biological age, upon which the division event is decided [133].
The parameter a∗ is the minimal division age. It imposes that it is not possible to divide
immediately after birth. For ages bigger than a∗, the bounds on B allow to stochastically
bound the age at division between two exponential random variables of rate parameter β−
and β+. Assumption 3.3.3-(iii) imposes inexact cell divisions which always give a bounded
number of individuals, but almost surely more than 1, which sets us in the supercritical
case. The two considered cases bring together a broad family of transition kernels used in
similar models. In particular the assumptions concerning the mutational kernel are inspired
from [122]. Importantly, the compactness is needed to prove the existence of the eigenele-
ments of Q but not for the Doeblin minorisation, which holds in more general cases. In this
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line, Assumption 3.3.3-(iv) is key to obtain the Doeblin minorisation condition and gener-
alises similar requirements needed in the one-dimensional case, such as Eq. (8) of [31] for
auto-similar fragmentation kernels, and Eq. (10) of [34], or Assumption (A4) of [122] for
general non-local mutation-type kernels. Finally, a major difference with respect to classical
size-structured models, is that we do not require conservation of mass during reproduction
events.

3.4 Existence of the eigenelements of Q
Now, in order to bring ourselves to the conservative setting, we begin by showing the exis-
tence of some pair of eigenelements for Q.

Proposition 3.4.1 (Existence of eigenelements). Under Assumptions 3.3.3, there exist a
positive constant λ > 0 and a positive function h ∈ W 1,∞

loc (X ) such that

Qh = λh.

To do so, we can reformulate the eigenvalue problem as a one-dimensional fixed point
problem. This is a classical strategy and other applications in two-dimensional spaces can
be found for example in [42, 73, 62]. In particular, we follow closely the arguments of [42]
which corresponds to the case g1 ≡ 1 with a fragmentation kernel and with additional
confinement assumption in the drift term which would allow us to work in a compact interval
in one of the two dimensions. We generalise this approach here.

Lemma 3.4.2 (Reformulation as a renewal equation). Any pair (λ, h) such that λ > 0 and
h ∈ W 1,∞

loc (X ) is solution almost everywhere to Qh = λh and verifies

lim
t→+∞

h(φt(x)) exp

(
−
∫ t

0

β (φs(x)) ds− λt
)

= 0 (3.13)

if and only if it verifies the renewal formula

h(x) =

∫ ∞

0

h(0, z)Kλ(x, z)dz, (3.14)

where

Kλ(x, z) = Cx

∫ ∞

0

e−λt px(t, z)dt (3.15)

Remark 3.4.3. Using Definition 3.3.2 we can then write Eq. (3.14) as

h(x) = Cx Ex[h(0, Z)e
−λT ]. (3.16)
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Proof of Lemma 3.4.2. We proceed by the method of integration along characteristics.
First of all, take h ∈ W 1,∞

loc (X ) and fix some x ∈ X and λ ≥ 0. We study Rh,λ
x : R+ → R

defined by

Rh,λ
x (t) := h(φt(x)) exp

(
−
∫ t

0

β (φs(x)) ds− λt
)
, t ≥ 0.

It is clear that Rh,λ
x is in L1

loc(R+). We show now that it is weakly differentiable. At least
formally, we have that

∂

∂t
Rh,λ

x (t)

=
(
∇h(φt(x))⊤g(φt(x))− (β(φt(x)) + λ)h(φt(x))

)
exp

(
−
∫ t

0

β (φs(x)) ds− λt
)
,

(3.17)

which is well defined and in L1
loc(R+) since h ∈ W 1,∞

loc (X ), and g and β are also locally
bounded from Assumptions 3.3.3. Therefore Rh,λ

x ∈ W 1,∞
loc (R+). Now, using the definition

of Q we get whenever h ∈ D(Q),

∂

∂t
Rh,λ

x (t)

=

(
Qh(φt(x))− λh(φt(x))− β(φt(x))

∫ ∞

0

h(0, z)k(φt(x), z)dz

)
e−

∫ t
0 β(φs(x))ds−λt.

• Qh = λh ∩ (3.13) =⇒ (3.14) : Now, suppose that (λ, h) is solution a.e. to Qh = λh.
Then, for almost every t

∂

∂t
Rh,λ

x (t) = −β(φt(x))e−
∫ t
0 β(φs(x))ds−λt

∫ ∞

0

h(0, z)k(φt(x), z)dz

= −Cxe
−λt

∫ ∞

0

h(0, z)px(t, z)dz, (3.18)

which is well defined and integrable over (0,+∞) by Assumptions 3.3.3, and since the
eigenfunction h must be in the domain of the extended generator, so the integral term is
well defined. Now, suppose that Eq. (3.13) is also verified. Then, integrating Eq. (3.18)
in (0,+∞) and using the decay condition Eq. (3.13) results into

h(x) =

∫ +∞

0

Cxe
−λt

∫ ∞

0

h(0, z)px(t, z)dz dt

which, by Fubini, gives exactly Eq. (3.14).
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• (3.14) =⇒ Qh = λh ∩ (3.13) : Finally, suppose that we have Eq. (3.14). Then we
have:

h(φt(x)) =

∫ ∞

0

h(0, z)Kλ(φ
t(x), z)dz

=

∫ ∞

0

∫ ∞

0

h(0, z)k(φt+s(x), z)β(φt+s(x)) exp

(
−
∫ t+s

t

β (φu(x)) du− λs
)
dsdz

=

(∫ ∞

0

∫ ∞

0

h(0, z)k(φs(x), z)β(φs(x)) exp

(
−
∫ s

0

β (φu(x)) du− λs
)
dsdz

−
∫ ∞

0

∫ t

0

h(0, z)k(φs(x), z)β(φs(x)) exp

(
−
∫ s

0

β (φu(x)) du− λs
)
dsdz

)
× exp

(∫ t

0

β (φu(x)) du+ λt

)
Therefore, using Eq. (3.14) again to replace the double integrals of the RHS we obtain:

Rh,λ
x (t) = h(φt(x)) exp

(
−
∫ t

0

β (φs(x)) ds− λt
)

= h(x)−
∫ ∞

0

∫ t

0

h(0, z)k(φs(x), z)ψ(s|x)e−λsdsdz

(3.19)

As t→ +∞, the improper integral in the RHS of Eq. (3.19) converges towards

lim
t→+∞

∫ ∞

0

∫ t

0

h(0, z)k(φs(x), z)ψ(s|x)e−λsdsdz =

∫ ∞

0

h(0, z)Kλ(x, z)dz = h(x),

from which we obtain Eq. (3.13). Moreover, supposing that h ∈ W 1,∞
loc (X ), from the

previous analysis, we have that Rh,λ
x ∈ W 1,∞

loc (R+), so by differentiation of Eq. (3.19) we
obtain almost everywhere,

∂

∂t
Rh,λ

x (t) = −
∫ ∞

0

h(0, z)k(φt(x), z)ψ(t|x)e−λtdz

Hence, a comparison with Eq. (3.17) gives that h ∈ D(Q), and for all x ∈ X and t > 0
we have almost everywhere Qh(φt(x)) − λh(φt(x)) = 0, or equivalently, Qh = λh almost
everywhere in X .

Remark 3.4.4. In particular the function η(y) := h(0, y) defined for all y ≥ 0 is solution to
the fixed point problem

η(y) =

∫ ∞

0

η(z)Kλ(0, y, z)dz. (3.20)

Therefore we will consider the operator Gλ defined for f ∈ C1(R+) by

Gλf(y) =
∫ ∞

0

f(z)Kλ(0, y, z)dz ∀y > 0. (3.21)
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We also introduce the operator Jλ : M(R+) → M(R+) which for any Radon measure ν
supported in R+ gives

Jλν =

(∫ ∞

0

Kλ(0, z, y)ν(dz)

)
dy (3.22)

and verifies the duality property below:

Proposition 3.4.5. For every λ ≥ 0, Jλ is the adjoint operator of Gλ.

Proof. Let f ∈ C(R2
+) and ν ∈M(R2

+). By Fubini’s Theorem,

⟨ν,Gλf⟩ =
∫ ∞

0

(∫ ∞

0

f(z)Kλ(0, y, z)dz

)
ν(dy)

=

∫ ∞

0

f(z)

(∫ ∞

0

Kλ(0, y, z)ν(dy)

)
dz = ⟨Jλν, f⟩ .

Remark 3.4.6. From Eq. (3.16), we can write

Gλf(y) = C(0,y) E(0,y)[f(Z)e
−λT ].

where again C(0,y) = ||K0(0, y, ·)||1 is the mean number of offspring produced by an individ-
ual of initial size y after its first jump.

Proof of Proposition 3.4.1. We aim to prove that there is a unique λ > 0 for which the
operator Gλ admits a unique fixed point h(0, ·). The pair (λ, h) is then solution to the eigen-
problem Qh = λh. This will be proven by means of Krein-Rutman’s theorem. In order to
be able to apply this theorem we need to work with a strictly positive compact operator. For
the compactly supported mutational kernel it is immediately the case, however it is not the
case for Gλ with a fragmentation kernel. Thus, we shall follow a standard approximation
scheme for the proof which is structured as follows:

1. We define a truncated version of Gλ which by Arzéla-Ascoli’s theorem we prove to be
a positive compact operator in the Banach space of continuous functions.

2. We apply Krein-Rutman theorem to prove that for each λ ≥ 0 the truncated operator
admits a unique eigenvalue µλ ≥ 0 and suitably normalised eigenfunction hλ ≥ 0.

3. We prove that there exists a unique λ0 > 0 such that µλ0 = 1

4. We prove that the value of λ0 is uniformly bounded for all the members of the family
of truncated operators.

5. We pass to the limit and show that the limit eigenelements (λ0, hλ0) of the family of
truncated operators are indeed solution to the fixed point problem.

Note that the proof is also valid for the compact mutational kernel which verifies Assump-
tion 3.3.3-(iii)-(b), but in that case neither the truncation nor the uniform estimates are
needed.
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Step 1 : Construction of the truncated operator.
For each R > 0 let GRλ : C1([0, R])→ C1([0, R]) defined for all λ > 0, for f ∈ C1([0, R]) by

GRλ f(y) =
∫ R

0

f(z)KR
λ (0, y, z)dz ∀y ∈ (0, R) (3.23)

with

KR
λ (0, y, z) =

∫ ∞

0

(
k(φt(0, y), z) +

1

R

∫ ∞

R

k(φt(0, y), ζ)dζ

)
ψ(t|(0, y))e−λtdt

We require to add the uniform correction z 7→ 1
R

∫∞
R
k(φt(0, y), ζ)dζ in order to endorse the

strict positivity of the operator. Indeed, for all y ∈ [0, R], from Fubini’s theorem, Assump-
tion 3.3.3-(iii) and Jensen’s inequality we obtain∫ R

0

KR
λ (0, y, z)dz =

∫ ∞

0

(∫ ∞

0

k(φt(0, y), z)dz

)
ψ(t|(0, y))e−λtdt

>

∫ ∞

0

e−λtψ(t|(0, y))dt

≥ exp (−λE [(0, y)]T ) .

Moreover, Assumption 3.3-(ii) gives that

0 < E
[
ϕ−1
(0,y)

(
A−, Y(0,y)(A−)

)]
≤ E [(0, y)]T ≤ E

[
ϕ−1
(0,y)

(
A+, Y(0,y)(A+)

)]
< +∞

where A− (respectively A+) follows an Exponential distribution of parameter β− (respec-
tively β+). Therefore for all positive f ∈ C1([0, R]), GR

λ f > 0.
Moreover, if in analogy with Definition 3.3.2, we define for all R > 0 the random couple
(TR, ZR) ∈ R+ × [0, R] such that under P(0,y) they have joint probability density

pR(0,y)(t, z) =
1

C(0,y)

(
k(φt(0, y), z) +

1z≤R

R

∫ ∞

R

k(φt(0, y), ζ)dζ

)
ψ(t|(0, y)),

then we can write
GRλ f(y) = C(0,y) E(0,y)[f(ZR)e

−λTR1ZR≤R]. (3.24)

Step 2 : Existence of the eigenelements of GRλ .
We begin by proving that for all ε > 0, λ ≥ 0 and R > 0, GRλ is compact. We show that
for every sequence (fn)n in the unit ball of C([0, R]) there exists a subsequence of

(
GRλ fn

)
n

which converges in C([0, R]) equipped with the uniform norm.

i. Uniform bound: For all y ∈ (0, R), f in the unit ball of C[0, R] we have from Eq.
(3.24):

GRλ f(y) ≤ C(0,y)||f ||∞ ≤ K̄

95



CHAPTER 3. V -UNIFORM ERGODICITY

ii. Equicontinuity: Since g1 ∈ C1(R2
+) and is strictly positive, and k is continuous in the

first two variables, we have that for every λ ≥ 0, (y, z) ∈ [0, R]× [0, R] 7→ Kλ(0, y, z) is
an uniformly continuous function on [0, R] × [0, R]. Therefore for all λ ≥ 0 and ε > 0
there exists δ > 0 such that if |y1 − y2| + |z1 − z2| < δ for y1, y2, z1, z2 ∈ [0, R], then
|Kλ(0, y1, z1)−Kλ(0, y2, z2)| < ε/R. Hence, for all f in the unit ball, y1, y2 ∈ [0, R]
such that |y1 − y2| < δ we have:∣∣GRλ f(y1)− GRλ f(y2)∣∣ ≤ ∫ R

0

|f(z)||Kλ(0, y1, z)−Kλ(0, y2, z)|dz < ε

independently on y1, y2.

Finally, by Ascoli’s criterium, there exists a convergent subsequence of
(
GRλ fn

)
n

and so the
operator GRλ is strictly positive and compact for the uniform topology ofC([0, R]). Therefore,
by Krein-Rutman theorem [119] there exists a unique triplet of a positive real value µR

λ > 0,
function ηRλ > 0 continuous on [0, R], and a positive Radon measure νRλ supported on [0, R]
such that

GRλ ηRλ = µR
λ η

R
λ (3.25)

J R
λ ν

R
λ = µR

λ ν
R
λ , νRλ ([0, R]) = 1 (3.26)〈

νRλ , η
R
λ

〉
R
= 1, (3.27)

where we denote ⟨ν, f⟩R =
∫ R

0
f(y)ν(dy).

Step 3 : Existence and uniqueness of λ0 > 0 such that µR
λ0

= 1
We show that the mapping λ 7→ µR

λ is a continuous strictly decreasing function which goes
through the value of 1 at some point. First, note that from Equations (3.25) and (3.27),
we have 〈

νRλ ,GRλ ηRλ
〉
R
= µR

λ (3.28)

We prove that λ 7→
〈
νRλ ,GRλ ηRλ

〉
R

is differentiable continuous and decreasing. Let us consider
the derivatives in the sense of distributions ∂λνRλ and ∂λη

R
λ . We show below that λ 7→〈

νRλ ,GRλ ηRλ
〉
R

is actually strongly differentiable with respect to λ as it has the same regularity
as λ 7→ GRλ f . First, by dominated convergence, differentiating under the integral sign on
Eq. (3.24) gives for every f ∈ C1([0, R]),(

∂λGRλ
)
f(y) = −C(0,y) E(0,y)[f(ZR)TRe

−λTR1ZR≤R]. (3.29)

Then, by differentiating under the duality brackets, and using the duality between G and J
with (3.25) and (3.26), we obtain

∂λµ
R
λ =

〈
∂λν

R
λ ,GRλ ηRλ

〉
+
〈
νRλ ,GRλ

(
∂λη

R
λ

)〉
+
〈
νRλ ,
(
∂λGRλ

)
ηRλ
〉

=
〈
∂λν

R
λ ,GRλ ηRλ

〉
+
〈
J R

λ ν
R
λ , ∂λη

R
λ

〉
+
〈
νRλ ,
(
∂λGRλ

)
ηRλ
〉

= µR
λ

(〈
∂λν

R
λ , η

R
λ

〉
+
〈
νRλ , ∂λη

R
λ

〉)
+
〈
νRλ ,
(
∂λGRλ

)
ηRλ
〉

= µR
λ ∂λ

〈
νRλ , η

R
λ

〉
+
〈
νRλ ,
(
∂λGRλ

)
ηRλ
〉
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Eq. (3.27) gives ∂λ
〈
νRλ , η

R
λ

〉
= 0, and therefore ∂λµR

λ =
〈
νRλ ,
(
∂λGRλ

)
ηRλ
〉
, i.e.,

∂λµ
R
λ = −

∫ R

0

C(0,y) E(0,y)

[
ηRλ (ZR)TRe

−λTR1ZR≤R

]
νRλ (dy) (3.30)

Since all the integrands are non-negative we have ∂λµR
λ < 0. So λ 7→ µR

λ is a continuous
strictly-decreasing function. Moreover, doing λ = 0, integrating Eq. (3.26), using Fubini’s
theorem to integrate first in the z variable, and using Assumption 3.3.3-(iii), we obtain

µR
0 =

∫ R

0

J R
0 ν

R
0 (dz)

=

∫ R

0

∫ R

0

∫ ∞

0

(
k(φt(0, y), z) +

∫∞
R
k(φt(0, y), ζ)dζ

R

)
ψ(t|(0, y))dt νR0 (dy) dz

=

∫ R

0

∫ ∞

0

(∫ ∞

0

k(φt(0, y), z)dz

)
ψ(t|(0, y))dt νR0 (dy) > 1

On the other hand, doing λ → ∞, passing to the limit under the expecation of Eq. (3.24)
we get for every f ∈ C([0, R]), GRλ f → 0 uniformly as λ → ∞. In particular, by the
equicontinuity of GRλ , for every δ ∈ (0, 2), there must be λ∗ large enough such that for every
f ∈ C([0, R]), GRλ f ≤ δ for all λ ≥ λ∗ and hereby, µR

λ ≤ δ for all λ ≥ λ∗. Therefore µR
λ → 0

as λ→∞. In consequence, there must be a unique λ0 > 0 such that µR
λ0

= 1. We then define
λR as the only λ0 > 0 such that µR

λ0
= 1 and denote ηR = ηRλR

the respective eigenfunction.
Next, we construct a sequence of hR from ηR which are to converge to the solution of the
intial eigenproblem and we show that we can establish an uniform bound over λR.

Step 4 : Construction of hR.
We extend the definition of Kλ to all (a, y) ∈ X , z ∈ [0, R]. Define

KR
λ (a, y, z) :=

∫ ∞

0

(
k(φt(a, y), z) +

∫∞
R
k(φt(0, y), ζ)dζ

R

)
ψ(t|(a, y))e−λtdt,

and let

hR(a, y) :=

∫ R

0

ηR(z)K
R
λR
(a, y, z)dz. (3.31)

Hence, taking a = 0, since ηR solves Eq. (3.25) for µR
λ = 1, we have that:

hR(0, y) =

∫ R

0

ηR(z)K
R
λR
(0, y, z)dz = GRλR

ηR(y) = ηR(y),

and therefore hR verifies{
hR(x) =

∫ R

0
hR(0, z)K

R
λR
(x, z)dz = Cx Ex

[
ηR(ZR)e

−λRTR1ZR≤R

]
∀x ∈ X

hR(0, y) = ηR(y) ∀y ∈ (0, R)
(3.32)
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where Cx = ||K0(x, ·)||L1(R+). Then, we can repeat the steps of the proof of Lemma 3.4.2
to show that the truncated renewal equation (3.32) (which is the truncated version of Eq.
(3.14)) is equivalent to have the boundary condition

lim
t→+∞

hR(φ
t(x)) exp

(
−
∫ t

0

β(φs(x))ds− λRt
)

= 0 (3.33)

and to have that hR is solution to the truncated eigenvalue problem

QRhR(a, y) = λR hR(a, y)

where

QRh(a, y) = g(a, y)⊤∇h(a, y)

+ β(a, y)

(∫ R

0

h(0, z)

(
k(a, y, z) +

∫∞
R
k(a, y, ζ)dζ

R

)
dz − h(a, y)

)
.

Hence, developing QRhR(0, y) one obtains

QRhR(0, y) =g1(0, y)∂ahR(0, y) + g2(0, y)∂yhR(0, y)

+ β(0, y)

(∫ R

0

hR(0, z)

(
k(a, y, z) +

∫∞
R
k(a, y, ζ)dζ

R

)
dz − hR(a, y)

)
.

Therefore ηR = hR(0, ·) is solution to

λRηR(y) = g2(0, y)η
′
R(y)− β(0, y)ηR(y)

+ β(0, y)

∫ R

0

ηR(z)

(
k(0, y, z) +

∫∞
R
k(a, y, ζ)dζ

R
+ g1(0, y)∂aK

R
λR
(0, y, z)

)
dz (3.34)

In our case, Assumption 3.3.3-(ii) which imposes β(0, y) = 0 for every initial size y simplifies
this last equation into

g2(0, y)η
′
R(y)− λR ηR(y) = 0

Therefore for all R > 1, if we impose the normalisation condition ηR(1) = 1, we have

ηR(y) = exp

(
λR

∫ y

1

1

g2(0, z)
dz

)
, y ∈ [0, R] (3.35)

Finally, coming back to (3.24) and (3.25), we have for all y ∈ (0, R),

ηR(y) = C(0,y) E(0,y)[ηR(ZR)e
−λTR1ZR≤R]

⇐⇒ 1 = C(0,y) E(0,y)

[
ηR(ZR)

ηR(y)
e−λTR1ZR≤R

]
⇐⇒ 1 = C(0,y) E(0,y)

[
exp

(
λR

(∫ ZR

y

1

g2(0, z)
dz − TR

))]
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In particular the last equation characterises λR as the unique λ > 0 such that for all y ∈
(0, R), the following Euler-Lotka-type equation is verified

1 = C(0,y)E(0,y)

[
exp

(
λ

(∫ ZR

y

1

g2(0, z)
dz − TR

))]
. (3.36)

Step 5 : Uniform bound for λR (Fragmentation case)
Suppose that for all a ≥ 0, supp k(a, y, ·) ⊆ (0, y). This is, the newborns sizes are almost
surely smaller than the parent size. Hence, for all initial size y we have

P(0,y)

(
TR >

∫ ZR

y

1

g2(A0,y(z), z)
dz

)
= 1. (3.37)

Indeed, from Lemma 3.3.1-(4.) we have that ϕ−1
0,y(A0,y(z), z) =

∫ z

y
1

g2(A0,y(z),z)
dz is the time

needed to go from size y to z following the deterministic flow only, and it has to be smaller
than the division time at which the trajectory jumps to z. Then, thanks to Assumption 3.3.3-
(i) which gives g2(0, y) ≥ g2(a, y), we have also that

P(0,y)

(
TR >

∫ ZR

y

1

g2(0, z)
dz

)
= 1.

Therefore for all λ > 0

exp

(
λ

(∫ ZR

y

1

g2(0, z)
dz − TR

))
≤ 1 ∈ L1(R2

+, p(0,y)dtdz), P(0,y)-a.s., (3.38)

and by dominated convergence if λR converges to +∞ as R→∞, then

E(0,y)

[
exp

(
λR

(∫ ZR

y

1

g2(0, z)
dz − TR

))]
→ 0

which contradicts Eq. (3.36). So there must exist Λ̄ > 0 such that for all R > 1, λR < Λ̄.
Moreover, analogous to Step 3, if we differentiate Eq. (3.28) in the sense of distributions
with respect to R, we obtain

∂Rµ
R
λ =

〈
νRλ ,
(
∂RGRλ

)
ηRλ
〉
.

Again, the definition GRλ gives us that this derivative can be computed in the strong sense.
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Indeed, for any positive continuous function f : [0, R]→ R+ we have

∂RGRλ f(y)

=
∂

∂R

∫ R

0

f(z)

∫ ∞

0

(
k(φt(0, y), z) +

∫∞
R
k(φt(0, y), ζ)dζ

R

)
ψ(t|(0, y))e−λtdtdz

=f(R)

(∫ ∞

0

(
k(φt(0, y), R) +

∫∞
R
k(φt(0, y), ζ)dζ

R

)
ψ(t|(0, y))e−λtdt

)
−
∫ R

0

f(z)

∫ ∞

0

1

R

(
k(φt(0, y), R) +

∫∞
R
k(φt(0, y), ζ)dζ

R

)
ψ(t|(0, y))e−λtdtdz

=

(∫ R

0

f(R)− f(z)
R

dz

)
×
(∫ ∞

0

(
k(φt(0, y), R) +

∫∞
R
k(φt(0, y), ζ)dζ

R

)
ψ(t|(0, y))e−λtdt

)
,

which is positive whenever f is an increasing function. Since Eq. (3.35) gives that for
every fixed λ, ηRλ (y) is increasing in y, then

(
∂RGRλ

)
ηRλ > 0 and therefore ∂RµR

λ > 0. In
particular, the sequence of λR, which is defined as the values of λ such that µR

λ = 1, is then
also increasing in R.

Step 6 : Identification of the limit
Step 5 gives that (λR)R is an increasing bounded sequence asR→∞, so with a limit written
λ > 0. Moreover, for each λR exists a unique hR associated, defined by Eq. (3.31). The
family of hR is equibounded and equicontinuous thanks to Eq. (3.33), Eq. (3.35) and the
bound on λR. Note indeed that Eq. (3.35) depends on R only through λR. We can therefore
extract a subsequence converging to some (λ, h) as R→∞. We must now check that (λ, h)
is a good pair of eigenelements, which we do by dominated convergence. In Step 4 we have
constructed hR such that it is solution to Equations (3.32) and (3.33) which we repeat below
to justify each limit.

hR(x) = Cx Ex

[
ηR(ZR)e

−λRTR1ZR≤R

]
∀x ∈ X

hR(0, y) = ηR(y) ∀y ∈ (0, R)

hR(φ
t(x)) ∼

t→∞
exp

(∫ t

0
β(φs(x))ds+ λRt

)
The normalisation constant Cx is already the one required in the limit case. For the expec-
tation term, recalling from Eq. (3.35) that

ηR(y2)

ηR(y1)
= exp

(
λR

∫ y2

y1

1

g2(0, z)
dz

)
and using Eq. (3.38) in Step 5, we deduce that for all y ∈ (0, R),

ηR(ZR)e
−λRTR ≤ ηR(y) P(0,y)-a.s.
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Therefore for all R > 1,

E(a,y)

[
ηR(ZR)e

−λRTR1ZR≤R

]
≤ ηR(y) < +∞

and we can pass to the limit under the expectations and conclude that the limit h and λ
verify the renewal formula

h(x) = Cx Ex

[
h(0, Z)e−λT

]
∀x ∈ X

which is Eq. (3.16) and is equivalent to Eq. (3.14). Thus, by Lemma 4.2 the couple (λ, h)
is almost everywhere solution to Qh = λh.

Remark 3.4.7. The assumption β(0, ·) ≡ 0 is crucial for the characterisation of h in Step 4
of the proof of Proposition 3.4.1. The case β(0, x) > 0 could possibly be treated, but it would
require additional assumptions in order to have a 7→ KR

λ (a, x, z) ∈ W 1,1
loc (R+) and to then

control the age derivatives of the kernel KR
λ . Then, Eq. (3.34) would be a scalar transport

equation for hRλ , which thereby admits an elliptic maximum principle. Nonetheless, the
assumption β(0, ·) ≡ 0, while being perfectly biologically meaningful, allows us to avoid
this technicalities.

3.5 Petiteness of compact sets for sampled chains
We want to prove the following Doeblin petite-set condition for all the compact sets of X .

Proposition 3.5.1. Let Pt be the Markov process characterised by the infinitesimal generator
A defined by Eq. (3.10). If Assumptions 3.3.3 are verified, then every compact K ⊂ R2

+ is
a petite-set for some skeleton chain of Pt. This is, there is a non-trivial discrete sampling
measure µ over R+ and a non-trivial measure ν over R2

+ such that

⟨µ, δxP·f⟩ =
∫ ∞

0

Ptf(x)µ(dt) ≥ ⟨ν, f⟩ ∀x ∈ K

Before the proof we will introduce some useful lemmas. First, we recall Duhamel formula
(3.39), which describes the trajectories driven by the semigroup Pt and allows us to extend
the definition of the semigroup as the mild solution of an iterative evolution equation.

Lemma 3.5.2 (Duhamel formula). For all x ∈ X , f ∈ C1,1
b (X ), Pt is the mild solution to

Ptf(x) =f
(
φt(x)

)
exp

(
−
∫ t

0

β (φs (x)) ds

)
+

∫ t

0

ψ(s|x)
∫ ∞

0

Pt−sf(0, z)
h(0, z)k (φs(x), z)∫∞

0
h(0, z′)k (φs(x), z′) dz′

dzds, (3.39)

101



CHAPTER 3. V -UNIFORM ERGODICITY

Proof. A classical probabilistic proof consists in writing Ptf(x) conditionally to the occur-
rence of the first jump. It is also possible to prove it by means of a variation of parameters
method, as in Corollary 1.7 from [51], for example. Here we provide the probabilistic proof.
Let X a Markov process whose law is given by generator A defined in Eq. (3.10). Recall
from definition 3.3.2 the random variables T and Z which represent the time of the first
jump and the new size after the first jump. Note however that the transition kernel of the
Markovian generator A has been rescaled, so that the joint law of (T, Z) under Px is from
now on given by the density function

px(t, z) = ψ(t|x) ·
β(x)h(0,z)

h(x)
k(φt(x), z)∫∞

0
β(x)h(0,z

′)
h(x)

k(φt(x), z′)dz′
= ψ(t|x) · h(0, z)k (φs(x), z)∫∞

0
h(0, z′)k (φs(x), z′) dz′

where the probability density of the transition x 7→ (0, z) is computed as the ratio between
the transition rate of x 7→ (0, z) and the total transition rate, as described by the generator
A. Hence, by conditioning on T under Px and using the strong Markov property of X, we
have:

Ptf(x) = E [x] f(Xt) =E [x] f(Xt)1T>t + E [x] f(Xt)1T≤t

=E [x] f(Xt)|T > tPx(T > t) + E [x]E [x] f (Xt)|T1T≤t

=E [x] f(Xt)|T > tPx(T > t) + E [x]E [(0, Z)] f(Xt−T )1T≤t

=f
(
φt(x)

)
exp

(
−
∫ t

0

β (φs (x)) ds

)
+

∫ t

0

ψ(s|x)
∫ ∞

0

Pt−sf(0, z)
h(0, z)k (φs(x), z)∫∞

0
h(0, z′)k (φs(x), z′) dz′

dzds.

We can give now the proof of Proposition 3.5.1:

Proof of Proposition 3.5.1. Let x ∈ K compact such that K ⊂ [a, ā] × [y, ȳ]. We iterate
once Duhamel’s formula (3.39), using the positivity of Pt:

Ptf(x) =f
(
φt(x)

)
exp

(
−
∫ t

0

β (φs (x)) ds

)
+

∫ t

0

ψ(s|x)
∫ ∞

0

h(0, z)k (φs(x), z)∫∞
0
h(0, z′)k (φs(x), z′) dz′

{
f
(
φt−s(0, z)

)
exp

(
−
∫ t−s

0

β (φs ((0, z))) ds

)
+

∫ t−s

0

ψ(u|x)
∫ ∞

0

Pt−s−uf(0, ξ)
h(0, ξ)k (φu(0, z), ξ)∫∞

0
h(0, ξ′)k (φu(0, z), ξ′) dξ′

dξdu

}
dzds

≥
∫ t

0

ψ(s|x)
∫ ∞

0

f
(
φt−s (0, z)

)
exp

(
−
∫ t−s

0

β (φs ((0, z))) ds

)
h(0, z)k (φs(x), z)∫∞

0
h(0, z′)k (φs(x), z′) dz′

dzds (3.40)
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To obtain the desired result we aim to solve two crucial steps:

i. First, to prove the existence of some C1-diffeomorphism which could allow us to
change variables inside the latter integral as to obtain a measure over X .

ii. Second, to bound from below the resulting integral uniformly for every x ∈ K , using
its compactness.

Fix some final time t ≥ 0, and define γt : X → X as

γt(s, z) := φt−s (0, z) .

We show first that it’s a differentiable function. Fix s, z and suppose

(a, y) = γt(s, z).

Then the function u defined as u(s) = γt(s, z) is the unique solution to the Initial Value
Problem {

u′(s) = −g(u(s)), s ≤ t

u(0) = (a, y)

Thus, ∂sγt(s, z) = −g(u(s)). Moreover, by Lemma 3.3.1, the smoothness of the vector field
g and the fact that the ODE system is autonomous gives the smoothness of the flow with
respect to the initial condition. Thus, the Jacobian matrix of γt equals for all s ≤ t and
z > 0:

Dγt(s, z) =
[
−g (φt−s(0, z)) ∂zφ

t−s(0, z)
]
, (3.41)

where, from Lemma 3.3.1-2, the derivative of the flow with respect to the initial size is
given by

∂zφ
t(0, z) = exp

(∫ t

0

Dg (φs (0, z)) ds

)(
0
1

)
.

where we recall that Dg stands for the Jacobian matrix of g and exp(·) is an exponential
matrix. Moreover, let r 7→ Y(a,y)(r) be the unique orbit of the vector field g passing trough
the point (a, y). Its is straightforward that z = Y(a,y)(0), so that the inverse of γt is given
for all (a, y) ∈ R2

+ by

γ−1
t (a, y) =

(
t− ϕ−1

0,Y(a,y)(0)
(a, y) , Y(a,y)(0)

)
.

Fig. 3.2 summarises graphically the change of variables and the definition of γ−1
t . Given

a, y,x and t, the inversion of γ consists in determinating the value of ordinate z when the
integral curve flowing towards (a, y) hits the y-axis and the time t − s required to go from
this point to (a, y). Since Y(a,y) (green line) is known, the inversion is direct. We conclude
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x

Γ+
x

(a, y)

0

t− s
= ϕ

−1

(0,Y(a,y
)(0

))
(a, y

)

z = Y(a,y)(0)

a (age)

y (size)

s
φs(x)

Γ−
(a,y)

K

Figure 3.2: Graphical description of the change of variables defined by γt

that γt is a C1-diffeomorphism and then performing the change of variables (a, y) = γt(s, z)
in the RHS of Eq. (3.40) gives

Ptf(x) ≥
∫
R2
+

f(a, y)

{
ψ
(
t− ϕ−1

0,Y(a,y)(0)
(a, y)|x

)
exp

(
−
∫ ϕ−1

0,Y(a,y)(0)
(a,y)

0

β
(
φs
(
(0, Y(a,y)(0))

))
ds

)

h(0, Y(a,y)(0))k

(
φ
t−ϕ−1

0,Y(a,y)(0)
(a,y)

(x), Y(a,y)(0)

)
∫ ∞

0

h(0, z)k

(
φ
t−ϕ−1

0,Y(a,y)(0)
(a,y)

(x), z

)
dz

1∣∣detDγt (γ−1
t (a, y)

)∣∣1ϕ−1
0,Y(a,y)(0)

(a,y)≤t

}
da dy. (3.42)

Now, using Assumptions 3.3.3, we can bound the functions and the Jacobian found in the
obtained integral. First, since g ≥ 0, note that ||φt(x)|| ≥ ||φs(x)|| for all t > s. Second,
β−g1(x) ≤ β(x) ≤ β+g1(x). And third, by the definition of the flow,

∫ t

0
g1 (φ

s (x)) = φt
1(x)

which equals the age at time t of an individual with trait x at time 0. Then, recalling that
K ⊂ [a, ā]× [y, ȳ], for all t > 0 we obtain the following bounds:

i. For all (a0, y0) ∈ K , using the superior bounds on g1 from Assumptions 3.3.3-i. we
have

φt
1(a0, y0) = a0 +

∫ t

0

g1(φ
s(a0, y0))ds ≤ a0 +

∫ t

0

c1(1 + φs
1(a0, y0))ds
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Hence, by Gronwall inequality

φt
1(a0, y0) ≤ (a0 + c1t) e

c1t ≤ (ā+ c1t) e
c1t

Analogously, using the lower bounds on g1 from Assumptions 3.3.3-i., we obtain

φt
1(a0, y0) ≥ a0e

c0t ≥ aec0t

ii. From the previous result, for all x ∈ K

exp

(
−
∫ t

0

β (φs (x)) ds

)
≥ exp

(
−β+

∫ t

0

g1(φ
s(x))ds

)
= e−β+φt

1(x)

≥ e−β+(ā+c1t)ec1t ,

iii. Analogously
β(φt(x)) ≥ β−g1(φ

t(x)) ≥ β−c0φ
t
1(x) ≥ β−c0ae

c0t.

Therefore there are some constants A0, B0 > 0 such that

ψ (t− s|x) ≥ A0 exp
(
−B0(1 + t− s)ec1(t−s)

)
(3.43)

iv. Moreover, recall that the eigenfunction h is solution to Eq. (3.14). Then, by Fubini’s
Theorem, for all x ∈ K ,

h(x) =

∫ ∞

0

(∫ ∞

0

h(0, z)k
(
φt(x), z

)
dz

)
ψ(t|x)e−λtdt.

Thus, in particular, the integrability gives us that(∫ ∞

0

h(0, z)k
(
φt(x), z

)
dz

)
ψ(t|x)e−λt

h(x)
→ 0 as t→ +∞.

Therefore, there exist some constants C1, C2 > 0 such that for all x ∈ K there is
some time T (x) > 0 such that for all t > 0 we have(∫ ∞

0

h(0, z)k
(
φt(x), z

)
dz

)
ψ(t|x)e−λt

h(x)
≤ C11t≥T (x) + C21t<T (x)

where

sup
x∈K

sup
t<T (x)

(∫ ∞

0

h(0, z)k
(
φt(x), z

)
dz

)
ψ(t|x)e−λt

h(x)
≤ C2,

since the suprema are taken in a compact set and for a continuous locally bounded
function. Then, taking C0 = max {C1, C2} we have

1∫∞
0
h(0, z)k (φt(x), z) dz

≥ ψ(t|x)e−λt

C0h(x)

105



CHAPTER 3. V -UNIFORM ERGODICITY

where ψ(t|x) can again be bounded by below using Eq. (3.43). Moreover, the conti-
nuity of h implies that h is locally bounded and hence, for all x ∈ K , h(x) ≤ H0 <∞.
Hence we obtain finally

1∫∞
0
h(0, z)k (φt(x), z) dz

≥ A0

C0H0

exp
(
−B0(1 + t)ec1t − λt

)
(3.44)

Note that these three estimates give bounds which are dependent only on t.

v. From (3.41), for all s ≤ t and z > 0, the Jacobian determinant equals

detDγt(s, z) = ||g
(
φt−s(0, z)

)
||||∇zφ

t−s(0, z)|| sin θ(s, t, z) (3.45)

where θ(s, t, z) is the angle between g (φt−s(0, z)) and ∇zφ
t−s(0, z). Hence, from

Lemma 3.3.1.2, we get

|detDγt (s, z)| ≤ ||g
(
φt−s(0, z)

)
||
∣∣∣∣∣∣Dφt−s (0, z)

∣∣∣∣∣∣ ,
where |||·||| is the matrix norm induced by ||·||, and therefore∣∣detDγt (γ−1

t (a, y)
)∣∣ ≤ ||g(a, y)|| ∣∣∣∣∣∣∣∣∣∣∣∣Dφϕ−1

0,Y(a,y)(0)
(a,y) (

0, Y(a,y)(0)
)∣∣∣∣∣∣∣∣∣∣∣∣

=: ||g (a, y)||E0(a, y) (3.46)

Note that this bound depends only on (a, y) and neither on x or t.

Hence, coming back to Eq. (3.42) and applying the bounds (3.43), (3.44) and (3.44) to the
integrands, we obtain

Ptf(x) ≥
∫
R2
+

f(a, y)

{
A2

0

C0H0

exp
(
−2B0(1 + t)ec1t − λt

)
exp

(
−
∫ ϕ−1

0,Y(a,y)(0)
(a,y)

0

β
(
φs
(
0, Y(a,y)(0)

))
ds

)

h(0, Y(a,y)(0))k

(
φ
t−ϕ−1

0,Y(a,y)(0)
(a,y)

(x), Y(a,y)(0)

)
1

||g (a, y)||E0(a, y)
1ϕ−1

0,Y(a,y)(0)
(a,y)≤t

}
da dy. (3.47)

Now, we make use of the petite-set condition which allows us to average the value of Ptf(x)
against a discrete sampling measure µ(dt) over a ∆-skeleton. This is, consider some ∆ > 0,
which will be fixed later on, and a measure µ over {j∆ : j ∈ N}, characterised by a sequence
(µj)j∈N with

∑
µj = 1 and µj > 0 for all j ∈ N. We have

⟨µ, δxP·f⟩ ≥
∞∑
j=0

µj

∫
X
f(a, y) k

(
φ
j∆−ϕ−1

0,Y(a,y)(0)
(a,y)

(x), Y(a,y)(0)

)
ζ(a, y)e−β̃j∆ej∆1ϕ−1

0,Y(a,y)(0)
(a,y)≤j∆ da dy,

106



3.5. PETITENESS OF COMPACT SETS FOR SAMPLED CHAINS

where the the function ζ(a, y) is constructed by regrouping all the terms which depend only
on (a, y) (and neither on x or t), and the constant β̃ > 0 is obtained after selecting only the
dominant term inside the exponential. Now, it remains to loose the dependency on x using
that x ∈ K to find a uniform lower bound for the whole compact. By Assumption 3.3.3-
(iv), we have that for all z, exists D(z) ⊂ R+ such that k(φs(x), z) > ε(z)1D(z)(φ

s(x)).
Then, let

T (x, z) := {s > 0 : φs(x) ∈ D(z)} ,

then
k(φs(x), z) > ε(z)1T (x,z)(s).

Now, let ∆ = infz>0 diam(D(z)) > δ− > 0. Then, for all x ∈ K and z > 0 there exists
n = n(x, z) ∈ N such that n∆ ∈ T (x, z). Then for all x ∈ K and z > 0,

∞∑
j=0

1j∆∈T (x,z) ≥ 1.

Moreover, since for all z > 0, diam(D(z)) < δ+, there exists some j big enough such that
the trajectory leaves D(z). In particular, the compactness of K implies that it exists j∗

such that for all x ∈ K
1j∆∈T (x,z) = 0 ∀j ≥ j∗.

Therefore for any sampling measure (µj)j we have

∞∑
j=0

µj1j∆∈T (x,z) ≥ min
j≤j∗

µj,

and finally for all fixed τ > 0,

∞∑
j=0

µje
−β̃j∆ej∆k

(
φj∆−τ (x), z

)
1τ≤j∆ ≥

∞∑
j=0

µje
−β̃j∆ej∆ϵ(z)1j∆−τ∈T (x,z)

≥ ϵ(z)min
j≤j∗

µj min
j≤j∗

e−β̃j∆ej∆

from what we can conclude that

⟨µ, δxP·f⟩ ≥
∫
X
f(a, y)ν(a, y)dady

with
ν(a, y) = ζ(a, y)ϵ

(
Y(a,y)(0)

)
e−β̃j∗e∆j∗∆

min
j≤j∗

µj

Finally, the proof of the main theorem 3.2.4 is a direct application of Harris Theo-
rem 3.2.1.
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3.6 Application: Steady-state size distribution of the adder
model of bacterial proliferation

We recall the generator of the adder model of E. coli growth introduced in Example 3.1.1:

Qf(a, y) =λy (∂a + ∂y) f(a, y)

+ λyB(a)

(
2

∫ 1

0

f(0, ρy)F (ρ)dρ− f(a, y)
)
− d0f(a, y).

We assume that:

Assumptions 3.6.1. Suppose

(A1) There exist 0 < b ≤ b̄ <∞ such that for all a ≥ 0, b < B(a) < b̄.

(A2) F is a continuous positive function in [0, 1], with connected support. We call for all
k ≥ 0,

mk =

∫ 1

0

ρkF (ρ)dρ

and suppose that m0 = 1, m1 = 1/2 and m2 < +∞. Note that, since ρ ∈ (0, 1) almost
surely, then for all k > 0 we have mk ≤ m1 = 1/2.

(A3) λ > d0.

Remark 3.6.2 (Doob h-transform.). In this case, it is straightforward to verify that h(a, y) =
y is an eigenfunction of Q associated to eigenvalue Λ = λ − d0. In particular, from Eq.
(3.10) the Doob h-transformed semigroup Pt is generated by the conservative infinitesimal
generator

Af(a, y) = λy (∂a + ∂y) f(a, y) + 2λyB(a)

∫ 1

0

(f(0, ρy)− f(a, y)) ρF (ρ)dρ. (3.48)

Indeed, the rescaled kernel gives

h(0, z)

h(a, y)
k(a, y, z) = 2

z

y
· 1
y
F

(
z

y

)
1z≤y,

which under the change of variables z 7→ ρ = z/y gives the probability density ρ 7→ 2ρF (ρ)
supported in [0, 1], which is indeed a probability by Assumption (A2).

Then, we have the following result of exponential convergence, that completes the analy-
sis started by [62] from an operator theory approach, where exponential convergence could
not be obtained from the estimates of relative entropy.
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Theorem 3.6.3. Under Assumptions (A1)-(A3), there is a unique probability measure π∗

such that there exist constants C, ω > 0 which verify Eq. (3.11) with Λ = λ−d0, h(a, y) = y
and V (a, y) = y−1 + y. Moreover π∗ admits a density given explicitly by

π∗(a, y) =
exp

(
−
∫ a

0
B(α)dα

)
y2

η∗(y − a),

where η∗ is the unique solution to the fixed point problem

η∗(y) = 2

∫ 1

0

{∫ x
ρ

0

ψ

(
y

ρ
− z
)
η∗ (z) dz

}
F (ρ)dρ,

where ψ(a) = B(a) exp
(
−
∫ a

0
B(α)dα

)
.

Proof. 1. Minorisation condition. It is a direct application of Proposition 3.5.1, since
the same hypothesis in Assumptions 3.3.3 are verified by Assumptions 3.6.1. As-
sumption 3.6.1-(v) requires some attention. Indeed, since F is bounded and with con-
nected support, k(a, y, z) = 1

y
F
(

z
y

)
1z≤y can be lower bounded in the form k(a, y, z) >

ε(z)1y∈D(z), with ε(z) of order 1/z, as represents the example of Fig. 3.3.

z

k(y, z)

y

F (z/(2z+δ))
2z+δ

2z0 2z + δ

Figure 3.3: Example of minorisation for k(a, y, z) = 1
yF
(
z
y

)
1z≤y and F given by the probability

density function of a Beta distribution. Then we have k(a, y, z) > ε(z)1y∈D(z) as required by As-
sumption 3.3.3-(v), with |D(z)| = δ for all z.

In general, we have for all δ > 0:

k(a, y, z) > min
z′∈[2z,2z+δ]

F (z/z′)

z′
1y∈[2z,2z+δ]

and we verify then Assumption 3.3.3-(v) with ε(z) = minz′∈[2z,2z+δ]
F (z/z′)

z′
andD(z) =

[2z, 2z + δ] for a chosen δ > 0.

Fig. 3.4 shows the characteristics curves y − a = constant, and the shadowed region
corresponds the space that is a priori reachable from the initial point along trajectories
with exactly one jump before time t. It is the version of Fig. 3.2 in this specific case.
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CHAPTER 3. V -UNIFORM ERGODICITY

Moreover, given an initial point (A in Fig. 3.2) and total trajectory time, this reachable
region is compact, which also simplifies some minorisations.

Finally, depending on the choice of the compact set K ⊂ [a, ā]× [y, ȳ] and of δ (which
gives also the discretisation timeStep of the δ-skeleton), the value of the minorant mea-
sure ν can be computed explicitly by numerical approximations, as given in Fig. 3.5
for different forms of F .

a0 a∗ a0 + y0(e
λt − 1)

y0

y∗
y0e

λt

a

y

a = yX a = y(1− e−λt)

A

B

C

D

Figure 3.4: Ideal trajectory from initial point A = (a0, y0) to point D = (a∗, y∗) in time t. The
individual spends a time t− s growing from A to B. Then, it divides and renews at point C. Finally,
it grows the remaining time s until point D.

2. Lyapunov-Foster condition. Consider the generator A defined by Eq. (3.48). Let
V (a, y) = y−1+y with. It is clear that V (a, y)→∞ as |(a, y)| → ∞. Let v(a, y) = yk,
then

Av(a, y) = λyk + 2λyB(a)

∫ 1

0

(
ρkyk − yk

)
ρF (ρ)dρ

=

(
kλ+ 2

(
mk+1 −

1

2

)
λyB(a)

)
v(a, y)

So, for V (a, y) = y−1 + y, we obtain

AV (a, y) =− λV (a, y) +∆(a, y),

where
∆(a, y) := 2λy + 2λB(a)

((
1

2
+

(
m2 −

1

2

)
y2
))

.

We already have −λ < 0 in the first term of the RHS. It remains to prove that ∆(a, y)
defined in the RHS above, is bounded. Indeed, notice that

∆(a, y) ≤ 2λ

(
b̄

(
m2 −

1

2

)
y2 + y +

b̄

2

)
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which is quadratic in y with a negative quadratic coefficient since m2− 1/2 ≤ 0. Thus

∆(a, y) ≤ λ

(
b̄+

1

b̄(1− 2m2)

)
=: d ∈ R+ (3.49)

So finally we obtain that for every (a, y) ∈ R2
+

AV (a, y) ≤ −λV (a, y) + d

3. Application of V-uniform Ergodic Theorem Using Theorem 3.2.1 we conclude the
existence of some C, ω > 0 such that for every x ∈ X and t ≥ 0

||δxPt − π||V ≤ CV (x) exp(−ωt) (3.50)

Now, using that by construction, Mtf = eΛthPt (f/h), we obtain that for all x ∈ X ,

||e−ΛtδxMt − h(x)π∗||V ≤ CV (x)e−ωt (3.51)

where for every A ∈ B(R2
+ \ {0}),

π∗(A) =

∫
A

π(dx)

h(x)

Moreover, we know that h(a, y) = y. On the other hand, π is the unique solution to
πPt = π, or equivalently, to the dual eigenvalue problem associated to the conservative
problem πA = 0. From (3.10) we obtain from the latter that π is then the measure
solution to the following PDE in the sense of distributions

(∂a + ∂y)(λyπ(a, y))− λyB(a)π(a, y) = 0

π(0, y) = 2

∫ 1

0

∫ ∞

0

B(a)
F (ρ)

ρ
π

(
a,
y

ρ

)
dadρ∫ ∞

0

∫ y

0

π(a, y)dady = 1

(3.52)
We solve it by the method of characteristics. From the first equation of (3.52), π
solves the ODE 

d
da
π(a, y(a)) = −

(
B(a) + 1

y(a)

)
π(a, y(a))

π(0, y(0)) = 2
∫ 1

0

∫∞
0
B(a)F (ρ)

ρ
π
(
a, y(0)−a

ρ

)
dadρ

where the associated characteristics are of the form y(a) = a + (y(0) − a(0)). Then,
the solution π of (3.52) is given by

π(a, y) =
exp

(
−
∫ a

0
B(α)dα

)
y

η∗(y − a),
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where the definition of η∗ is inherited from the initial condition of the ODE:

π(0, y(0)) =
η∗(y − a)
y − a

= 2

∫ 1

0

∫ ∞

0

B(a)
F (ρ)

ρ
π

(
a,
y(0)− a

ρ

)
dadρ.

Note that the RHS still depends implicitly on π. Hence, η∗ is solution to the fixed point
problem

η∗(x) = 2

∫ 1

0

∫ ∞

0

B(a)F (ρ) exp

(
−
∫ a

0

B(α)dα

)
η∗
(
x

ρ
− a
)
dadρ

= 2

∫ 1

0

∫ x
ρ

0

F (ρ)ψ

(
x

ρ
− a
)
η∗ (a) dadρ,

where

ψ(a) = B(a) exp

(
−
∫ a

0

B(α)dα

)
is the probability density function of the added size at division. The existence of a
formal solution to this problem is then a by-product of the existence of π, here provided
by Harris’ Theorem.

Thus finally, the stationary profile of Mt is given by

π∗(a, y) =
exp

(
−
∫ a

0
B(α)dα

)
y2

η∗(y − a)

Figure 3.5: Minorant measure ν for F given by i. the uniform distribution, ii. a Beta(5,5) distribu-
tion and iii. a Beta(20,20) distribution. The values were obtained from numerical approximation.
Only F changes between the three cases.
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Remark 3.6.4. The stability of this model has already been studied in the early works
of [70] for an application to plant physiology, and more recently by [62] where the ex-
ponential ergodicity could not be obtained using General Relative Entropy techniques. In
our case however, the direct application of Theorem 3.2.1, since the eigenelements of Q
are known, allows to prove this result. More generally, when the drift term g(a, y) is not
necessarily given by the exponential elongation, the previous section allows to prove the
existence of the suitable eigenelements. This was left as an open question by the works
of [62].

Remark 3.6.5. The proof presented above does not work for singular divisions as given,
in lieu of a density F , by ρ distributed according to δ1/2(dρ) as in a perfectly symmetric
mitosis. Indeed, the change of variables is no longer possible since z would be constant.
Moreover, if we try to pursue the method and average in time, one can check that the ob-
tained ν would be the trivial measure for some large enough compacts. Such a limitation
is not really surprising, since the authors of [45] have already shown that if the elongation
rate λ is constant for the whole population (as in our case), and the divisions are perfectly
symmetrical, then we do not have convergence, and a periodic behaviour is observed.

Remark 3.6.6. Figure 3.5 shows the shape of ν for different forms of the density F . As F
concentrates we can observe the increasing degeneracy of ν.

Remark 3.6.7. Here, the existence of η∗ is a by-product of the existence and uniqueness
of π provided by Harris’ Theorem. In contrast, in the works of [62], the existence of the
stationary measure depended on the existence of a unique solution to the fixed point problem.
Thus, the authors had to show compactness properties of the operator associated to the fixed
point problem, which our approach evades. Moreover, our approach allows more general
forms for F , which [62] requires to be of compact support strictly included in ]0, 1[.

3.7 Conclusions
The present article studies spectral and ergodic properties of the first-moment semigroup
of an age-size piecewise deterministic measure-valued process. The specificities discussed
here are two-fold.

First, we have that the process is non-conservative, and that the eigenelements are in
general unkwnon. This is addressed by following a classical truncation scheme in order
to apply Krein-Rutman’s theorem. The key is to use the renewal property brought by the
age structure that allows to reduce the dimension of the problem. Second, we have some
sort of degeneracy arising from the age-coordinate jumps (reset at 0 at each reproduction
event), along with a pure advection term between jumps, that makes it non-trivial to show
mixing trajectories that explore the two-dimensional unbounded domain X independently
with respect to the initial state. This is addressed by proving a minorisation condition for
petite sets. This condition is seemingly weaker than more usual small set conditions, since
it allows to average the action of the semigroup with respect to a suitable discrete sampling
measure in time, instead of fixing a uniform mixing time. However, as the works of Meyn
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and Tweedie show, petiteness and smallness are intimately related, and if a discrete-time
chain is irreducible and aperiodic, then every petite set is indeed small (Theorem 5.5.7. of
[112]). Despite this equivalence, as clearly shown in our setting, petiteness properties are
much easier to verify, even in degenerate cases. This appears as one of Meyn and Tweedie’s
theory main points (see Commentary 5.6 of [112], for example), and the implications are
strong when petiteness can be checked for all compact sets. Similar strategies could turn
out to be useful when trajectorial coupling conditions or “mass-ratio control" conditions as
the ones discussed by [34] prove hard to verify. Finally, it is worth noticing that a similar
approach can be followed in a PDE framework by constructing “controllabilty sets", in the
sense discussed in P.L. Lions’ lectures [101], which play a role equivalent to petite sets in
that theory.

As commented in the Introduction, PDMP evolving at higher dimensions could be of
particular interest for sampling complex target distributions in recent MCMC methods, as in
the models studied by [38, 16, 60]. Concerning the extension of the minorisation condition
to higher dimensions, this does not seems to be much of an issue. The bound relies on the
Duhamel representation (3.39) of the semigroup Pt which would be identical in a higher
dimensional case. Therefore, if γt(s, z) := φt−s(0, z) is still a C1-diffeomorphism on X ⊂
Rn+1

+ , and suitable assumptions are made to bound uniformly from below the integrals, the
extension of the presented method should be possible.

Finally, as pointed out by one of the reviewers, it could be also interesting to prove
Large Deviations Asymptotics, by employing the theory presented by [91], which extends
the approach presented here to a multiplicative ergodic theory. Such estimates are also
interesting from biological points of view, where the Large Deviations rate function can
be used to obtain variational representations of the Malthusian parameter, as shown for
example in [7]. This could be the subject of future works.
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Chapter 4

Phenotypic plasticity trade-o�s in an

age-structured model of bacterial

growth under stress

4.1 Introduction

Under the presence of antibiotics and other stress factors, bacteria can exhibit a dynamic and
heterogeneous expression of stress-response genes. In the case of Escherichia coli growing
under a sublethal concentration of an antibiotic targeting chromosome integrity such as
ciprofloxacin, the detection of DNA breaks in the cell chromosome triggers the initiation
of a DNA damage response called SOS response [145, 102, 115]. The intensity of this
response depends on the amount of damage, but it also exhibits high heterogeneity among
individuals, even in a isogenic population, because of the stochastic expression of several
factors [83, 3, 82]. Observations at single-cell level of this stress response have shown
that the heterogeneity of the SOS response is strongly dependent on the growth conditions
[82]. Moreover, for each individual cell, the SOS response can fluctuate substantially in
time, often as a sequence of pulses, transitioning from periods of apparent SOS inactivity to
periods of strong SOS response [83, 125, 58, 96, 74, 93, 128]. A distinct signature of this
strong expression is the highly perturbed division dynamics, caused by the SOS-dependent
expression of a cell division inhibitor, which induces in turn interdivision times which are
much longer than in non SOS inducing cells. At the same time however, cell growth is
not repressed by the SOS response, leading to the production of cells several times longer
than the normally observed ones, a phenomenon known as filamentation. Importantly, SOS
inducing cells are able to produce non SOS inducing offspring, which results in a subset
of cells that divide normally and could be able to rapidly take over the population once the
stress is stopped [144, 121, 86]. Interestingly, similar phenotypic variability has also been
shown in others stress response systems, with important consequences for the survival of
the population [125]. Collectively, these observations suggest strong links between single-
cell phenotypic heterogeneity and population level stress survival, which might be a key to
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explain antibiotic tolerance [3, 8, 23, 1].
Nonetheless, at least theoretically, the unconstrained heterogenenous expression of stress

strategies might lead to poor population-level performance, especially if the intensity of the
stress response is anti-correlated to the mechanisms that usually contribute to the popu-
lation fitness, such as fast division (inhibited by the SOS response) and volume increase
(inhibited by other general stress responses). Furthermore, the protein expression of stress
response genes has been shown to be generally within the noisiest in E. coli’s proteome
[130].

Here, to shed some conceptual and quantitative light into this puzzle, we propose a mini-
mal model that preserves the main elements that characterise the stress response described
above. First, we consider two discrete phenotypes: vulnerable (type i = 0) and tolerant
(type i = 1). Vulnerable cells can die with probability p ∈ [0, 1] at each division. Second,
we consider an age-structured population, in order to account for the random amount of
time that cells might spend in each state, as well as for the competition between division
and switching that is at heart of the trade-off between population growth and phenotypic
plasticity. On that account, cells of type 0 switch their type to type 1 at constant rate
α > 0. Third and finally, we consider that tolerant cells are able to stochastically recover,
in the sense that they can regenerate offspring of the vulnerable phenotype with a certain
probability γ at each division.

Several models have been studied in the context of other somehow similar bet-hedging
phenomena. After the model and data presented in [8], were the authors introduced a bi-
type model of normal and persistent cells, [95, 104, 99, 94] studied further generalisations
in fluctuating and random environment, under responsive and stochastic strategies. More
recently, [18, 17] studied bi-type non-structured populations of active and dormant cells
in a discrete-time setting, and analysed the effect of different switching strategies in a ran-
domly varying environment. In this work we generalise these fundamental ideas to the case
of stress response and give a detailed study of the fitness sensibility with respect to the
parameters, from both a probabilistic and deterministic approach.

Sections 4.2 to 4.6 give the main results of the paper and discuss their biological impli-
cations, whilst we postpone all the proofs and technical details to Sections 4.9 to 4.12. In
Section 4.2 we describe the model in detail and formalise it as a measure-valued random
process, from which we derive in Section 4.3 the extinction probability of a population initi-
ated by a single cell in an environment with a constant stress signal. Moreover, we obtain an
explicit condition linking the model parameters and under which this population establishes
with positive probability. We relate this result with the capacity of evolutionary rescue [12,
29] of phenotype switching populations.

Later, in Section 4.4 we show that under the survival condition, we can observe a
Malthusian behaviour for the first-moment semigroup of the stochastic process, charac-
terised by an exponential population growth rate λ > 0 and a stationary distribution of types
and ages. Moreover, we show that there is a equivalence relation between the criterion for
the establishment of the population obtained by stochastic and deterministic approaches,
which is in general not trivial for infinite-dimensional branching processes. Indeed, the
measure of fitness obtained from each approach, corresponds to different biological realities
[109, 50, 39]: in the microscopic case it corresponds to the probability that the branching
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process initiated by a single individual survives forever, while in the macroscopic case it is
the asymptotic rate of exponential growth of the population. Our results extend the parallel
results of [26, 27] in a mono-type growth-fragmentation-death case. However, in contrast
with [27] we show that the extinction probability and the Malthusian parameter do not
always vary in the same direction with respect to variations in the parameter space. In par-
ticular, if the stress is low enough (p < p̄ for some critical value p̄ < 1/2), increasing γ will
lead to a decreased survival probability of the population, but at the same time, to a higher
population growth rate. Our proofs show that the lost of the classical monotonic behaviour
arises from the crucial Assumption 4.2.4 that vulnerable individuals divide stochastically
faster than tolerant individuals. In the context of a size-structured cell growth model, [25]
have also shown similar loss of monotonicity, also in contrast to what was expected from
simpler cases. The work is also similar in spirit to [35], where the authors studied the vari-
ation of the Malthusian parameter with respect to an asymmetry factor in a size-structured
bi-type model with asymmetric divisions and growth in constant environment.

The results show that the optimal parameters in the sense of any of the two notions of
fitness can only correspond to extreme strategies: indeed, an optimal population under high
stress (p > p̄) is expected to bet all on type 1, and to favour a recovery probability γ = 0,
since any creation of cells of type 0 is detrimental for the population fitness. Under a low
stress (p ≤ p̄) an optimal population is expected to bet all on type 0 and to favour γ = 1.
The real interest of non-trivial switching strategies will appear when the environment (i.e.,
the stress parameter p) fluctuates in time. In Section 4.6, using Floquet’s theory [33, 32]
we extend our results to the case where we consider a T -periodic signal p(t). Although
in that case our results cannot be equally quantitative, we show that the variation of the
fitness with respect to the model parameters is now non-trivial and its sign depends on the
weighted time-average of the difference between the reproductive value [55] of each type
within a period length, with weights given by the mean division rate of the subpopulation of
type 1 at each instant. We then conclude with an outlook on the consequences for general
stress-response strategies and in particular for the case of the SOS response, for which
experimental estimations of the fitness landscape induced by varying some cell physiological
parameters are available [92].

4.2 Description of the individual-based model

4.2.1 Mechanisms of reproduction, phenotypic switching and death

Each individual cell is characterised by their age a ≥ 0 and a type i ∈ {0, 1}. The type
i = 0 stands for the vulnerable cells which are prone to death but are rather fast-dividing.
The type i = 1 are the tolerant cells which are supposed transiently protected from the
stress while being compelled to divide after much longer times. The inclusion of age as
a variable is two-fold. Firstly, we want to account for memory-effects for both normally
dividing and slowly dividing cells. Indeed, the distributions of division times, even in the
absence of antibiotic and under ideal conditions, are not exponential and are much better
explained by probability laws with memory, that need the inclusion of an age-like structure
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in the construction of the model [47]. Secondly, we can use the age as a proxy of other
cellular characteristics. For example, in the case of SOS inducing cells, filamentous cells
would correspond ideally to rather old individuals of type 1. Thus, we suppose that for each
individual cell, the division mechanism is triggered by its age in a phenotype-dependent
way. In particular, we suppose that the distribution of the interdivision times of cells of
type i are driven by an age-dependent division rate βi in the sense that for all individuals
we have

P
(
Divide at age < a+∆a

∣∣Type = i,Age ≥ a
)
= βi(a) · o(∆a)

We suppose that the transition between types is determined by the genotype which is
common to the whole population. Specifically, we suppose that for all the individuals of the
population, the switch between type 0 and 1 occurs after a random exponential time with
rate parameter α ≥ 0. In particular, this means that the 0 → 1 switch is memoryless and
can take place at any moment of the cell cycle, independently of the age of the individual.
Importantly, the switch and division dynamics are supposed independent, so it is possible
for a cell of type 0 to never switch, if its division time (determined by the value of β0 at
its current age) occurs before the intended switching time (determined by α). On the other
hand, we suppose that during the lifetime of a cell of type 1, switching back from type 1 to
type 0 is impossible. However, we also say that when a cell of type 1 divides, its offspring
can become of type 0 as consequence of a successful DNA repair induced by the burst of
SOS response which characterises the cells of type 1. In other words, when tolerant cells
divide, their strong DNA repairing abilities, prevent their daughters from dying at birth,
but maybe not for their next division. Indeed, in that case, we suppose that each daughter
can be born with type 0 with probability γ ∈ [0, 1]. The daughter will keep type 1 with
probability 1 − γ. We can think of γ as a measure of the DNA repair efficiency from one
generation to the next one, and as for α, we assume its value is encoded by the genotype
which is common to the whole population, so its value is the same for all individuals.

Finally, we suppose that the presence of antibiotic impacts the survival of vulnerable
cells only. Concretely, if a cell of type 0 initiates division, due to the antibiotic presence, it
might die instead of dividing with probability p ∈ [0, 1], which translates the environmental
concentration of antibiotic. Otherwise, with probability 1 − p, it will produce two new
identical cells. Although there is no biological reason for death to happen at division, it
seems a reasonable approximation to account in a minimal and very simple way the fact
that the considered stress targets only proliferating bacteria.

Table 4.1 summarises all these parameters and Fig 4.1 represents the described dynam-
ics.

Parameter Definition
βi(a) ∈ R+ Division rate at age a and type i
α ∈ R+ Switching rate from type 0 to 1 (phenotypic plasticity)
p ∈ [0, 1] Probability of death at division for cells of type 0 (environmental effect)
γ ∈ [0, 1] Probability that a type 1 divides and produces a type 0 (DNA repair effect)

Table 4.1: Summary of the model parameters.
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Figure 4.1: Schematic representation of the model.

4.2.2 The stochastic process Zt

Following the approach introduced by [57, 140], we represent the population as a measure-
valued stochastic process (Zt)t≥0 which at each time t ≥ 0 can be written as a point measure

Zt =
Nt∑
k=1

δ(Ak(t),Ik(t)) (4.1)

whereNt = ⟨Zt, 1⟩ is the total number of cells alive at time t, and (Ak(t), Ik(t)) ∈ R+×{0, 1}
for k ∈ {1, ..., Nt} is the age and phenotype at time t of cell number k, for any fixed arbitrary
order (e.g. numbered using Neveu’s notation, or by lexicographical order). In Section 4.8
we define rigorously the paths of Zt as solution of a Stochastic Differential Equation which
describes the desired dynamics conditionally to a given initial population.

We will work under the following set of assumptions.

Assumptions 4.2.1.

(A1) Division times are almost surely finite: For all i ∈ {0, 1},∫ +∞

0

βi(a)da = +∞.

(A2) Division rates are uniformly bounded: ∃ b̄ > 0 such that ∀i ∈ {0, 1} , a ≥ 0, βi(a) ≤ b̄.

(A3) Division rates are uniformly bounded by below from a certain age: ∃ a0 > 0, b > 0
such that β0(a) ≥ b whenever a ≥ a0.

Under assumption (A1) we define the survival probabilities for an individual of type 0
or 1 to do not experience any event between ages s and t, given that it has already survived
until age s:

ψ0(s, t) = exp

(
−
∫ t

s

(α + β0(u))du

)
, (4.2)

ψ1(s, t) = exp

(
−
∫ t

s

β1(u)du

)
, (4.3)
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and we define the ⋆ composition between the two survival functions as

ψ0 ⋆ ψ1(s, t) =

∫ t

s

ψ0(s, u)ψ1(u, t)du. (4.4)

In particular αψ0 ⋆ ψ1(s, t) represents the probability for an individual of type 0 at initial
age s, to switch to type 1 at some point between ages s and t and survive the remaining
time until it has reached age t, given that it has already survived until age s.

We provide now some useful definitions that will be used in the next paragraphs.

Definition 4.2.2. 1. For any finite positive point measure µ, set Pµ the probability under
the initial condition Z0 = µ, and Eµ the respective expectation.

2. Let T1 be the first jump of Z.

3. Let (I1, I2) be the types of the two daughters obtained after the first jump, if it was a
division.

Lemma 4.2.3 stated below characterises the probability laws of these random variables,
and will be very useful to compute the probability that a population initiated by a single
bacterium goes extinct.

Lemma 4.2.3. Under Assumptions 4.2.1,

1. The probability that one cell of initial state (a, i) dies before time t0 ≥ 0, instead of
dividing or switching before that, is

Pδ(a,i) (ZT1 = 0, T1 ≤ t0) = 1i=0 p

∫ t0

0

βi(a+t) exp

(
−
∫ t

0

βi(a+ u)du− αt
)
dt. (4.5)

2. For any bounded measurable function h : R+ → R, the conditional law of the switching
time is characterised by

Eδ(a,0)

[
h(T1)1ZT1

=δ(a+T1,1)
,T1≤t0

]
=

∫ t0

0

h(t) α exp

(
−
∫ t

0

β0(a+ u)du− αt
)
dt. (4.6)

3. For any bounded measurable function h : {0, 1} × {0, 1} → R, the conditional law of
the daughter types after division is characterised by

Eδ(a,i)

[
h(I1, I2)1ZT1

=δ(0,I1)+δ(0,I2),T1≤t0

]
=∫ t0

0

βi(a+ t) exp

(
−
∫ t

0

βi(a+ u)du− (1− i)αt
)
dt
{
1i=0 (1− p)h(0, 0)

+ 1i=1

(
γ2h(0, 0) + (1− γ)2h(1, 1) + γ(1− γ)(h(0, 1) + h(1, 0))

)}
(4.7)
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Proof. By the construction introduced in Definition 4.8.1, if the initial population consists
on only one individual, Z0 = δ(a,i), then T1 is the first jump time of the process

Jt =

∫ t

0

∫
{1}×R+×[0,1]2

1{z≤α(1−i)+βi(a+u)}N (du, di, dz, dω),

which, by definition ofN , is a non-homogeneous Poisson process whose time-dependent rate
is then given by t 7→ ((1− i)α + βi(a+ t)). Therefore T1 has the probability distribution

Pδ(a,i) (T1 > t) = Pδ(a,i) (Jt = 0) = exp

(
−
∫ t

0

((1− i)α + βi(a+ u)) du

)
. (4.8)

From Assumptions 4.2.1 (A1) we can then deduce that Pδ(a,i) (T1 < +∞) = 1. Moreover,
by differentiation we get that T1 admits the probability density function

Pδ(a,i) (T1 ∈ [t+ dt[) = ((1− i)α + βi(a+ t)) exp

(
−
∫ t

0

((1− i)α + βi(a+ u)) du

)
dt.

(4.9)
Now, the value of the process Zt at time t = T1, i.e. just after the first jump, is given by

ZT1 =



0 (death) with probability
(1− i)pβi(a+ T1)

(1− i)α + βi(a+ T1)

δ(0,I1) + δ(0,I2) (division) with probability
((1− i)(1− p) + i)βi(a+ T1)

(1− i)α + βi(a+ T1)

δ(T1,1) (switch) with probability
(1− i)α

(1− i)α + βi(a+ T1)

.

(4.10)
The equations of Lemma 4.2.3 are obtained by computing joint probabilities and expecta-
tions using the marginal probability density of T1, obtained from (4.9), and the conditional
probability of ZT1 given T1, (4.10). For example, we have

Pδ(a,i) (ZT1 = 0, T1 ≤ t0) = Eδ(a,i) [P(ZT1 = 0|T1)1T1≤t0 ]

= Eδ(a,i)

[
(1− i)pβi(a+ T1)

(1− i)α + βi(a+ T1)
1T1≤t0

]
= 1i=0

∫ t0

0

pβi(a+ t)

α + βi(a+ t)
(α + βi(a+ t)) exp

(
−
∫ t

0

(α + βi(a+ u)) du

)
dt.

We obtain analogously the conditional law of the switching time. For the conditional law of
the daughter types, we have also to notice that, if i = 0, then I1 = I2 = 0, and that, if i = 1,
then I1 and I2 are independent Bernoulli random variables of parameter 1− γ.

We are interested by the case motivated in Section 1, in which individuals of type 1,
while tolerant, divide slower than individuals of type 0. We will only use this assumption to
study the sensitivity of the population fitness with respect to the model parameters, starting
in Section 4.5.
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Assumptions 4.2.4.

(B1) Let Tdiv be the time of division of a non-switching cell, this is,

Pδ(0,i) (Tdiv ≥ a) = exp

(
−
∫ a

0

βi(s)ds

)
.

We suppose that the type 0 division time is stochastically dominated (in first order)
by the type 1 division time:

Pδ(0,0) (Tdiv ≥ a) < Pδ(0,1) (Tdiv ≥ a) .

Remark 4.2.5. For individuals of type 0, T1 = min (Tdiv, Tswitch), where Tswitch is a Expo-
nential random variable of parameter α. Therefore, for all α ≥ 0, the first event time T1 is
stochastically larger for individuals of type 1 than for individuals of type 0, which implies
ψ0(0, a) < ψ1(0, a). Moreover, for all non-decreasing function g we we have Eδ(0,0) [g(T1)] <
Eδ(0,1) [g(T1)] .

4.3 Conditions for microscopic establishment
We give now conditions for the parameters α, γ such that for two given division rates β0, β1
and death probability p, the population initiated by a single initial cell establishes indefi-
nitely. We begin by computing the probability that the population initiated by a single cell
goes extinct.

Definition 4.3.1. Let πi(a, i) be the extinction probability of a population initiated by a
single cell of type i ∈ {0, 1} and age a ≥ 0. This is

πi(a, i) := Pδ(a,i) (∃t > 0 : Nt = 0) . (4.11)

Set πi = π(0, i) the extinction probability associated with a single initial cell of age 0.

We will focus now in what happens when the initial cell has age 0. We will see, nev-
ertheless, that the extinction probabilities of a population issued from a single cell of any
initial age a > 0 can be obtained explicitly from the two extinction probabilities π0 and π1.

Theorem 4.3.2. Let T1 be the time of the first jump event. For all a ≥ 0, let qa the probability
that an individual of type 0 switches before dividing, conditionally to have already survived
until age a:

qa = Pδ(0,0)

(
ZT1 = δ(T1,1)|T1 ≥ a

)
= Pδ(0,a)

(
ZT1 = δ(T1,1)

)
=

∫ +∞

0

αψ0(a, t)dt

and let in particular

q = q0 = Pδ(0,0)

(
ZT1 = δ(T1,1)

)
=

∫ +∞

0

αψ0(0, t)dt. (4.12)
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The vector of extinction probabilities (π0, π1) is the smallest solution on [0, 1] of the quadratic
system {

π0 = (1− q)p+ (1− q)(1− p)π2
0 + qπ1,

π1 = (γπ0 + (1− γ)π1)2 ,
(4.13a)

(4.13b)

in the sense that for any other admissible solution π̃, we have πi ≤ π̃i for both i ∈ {0, 1}.
Moreover, for any a ≥ 0 we can obtain π(a, i) as explicit functions of π0 and π1 (which
justifies our analysis focused in the initial condition 0), as given by

π(a, 0) = (1− qa)p+ (1− qa)(1− p)π2
0 + qaπ1 (4.14)

π(a, 1) = π1. (4.15)

The proof of this theorem is postponed in section 4.10.

Remark 4.3.3. Since cells of type 1 do not die in their generation, the division rate β1 does
not play any role in the extinction probability.

Remark 4.3.4. Thanks to the integrability assumption (A1), we can differentiate the inte-
gral (4.12) to obtain ∂αq|α=0 = Eδ(0,0) [Tdiv], where Tdiv is the division time of cells of type
0 (which depends only on β0). Therefore, at least for small values of α, the sensitivity of
q with respect to α is proportional to the mean division time of vulnerable cells. We give a
more practical example below.

Example 4.3.1 (Gamma distributed inter-division times). Suppose that β0 is such that
for some a0, b0 > 0, we can write for all t ≥ 0

β0(t) exp

(
−
∫ t

0

β0(u)du

)
=

ba00
Γ(a0)

ta0−1e−b0t.

Then, the inter-division times are Gamma random variables of shape parameter a0 and
rate parameter b0. This has been shown to be a good parametric model to explain the
distributions of division ages [66]. An integration by parts of (4.12) shows that under
this assumption,

q = 1−
(
1 +

α

b0

)−a0

.

The general shape for q as function of α is given in Fig. 4.2. Calibrating the values of
a0 and b0 can modify the sensibility of q with respect to α. In particular, choosing a0 = 1
reduces to the memoryless case β0 ≡ b0, where age does not affect the division times,
which are then identically distributed exponential random variables of rate parameter
b0. More in general, notice that the derivative at the origin of q with respect to α is
equal to a0/b0, which is the expected division time in the Gamma case.
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b0
0

1− 2−a0

1

a 0
/b

0

α

q

Figure 4.2: Form of q as function of α in the case of division times following a Gamma distribution
of parameters (a0, b0) (Example 4.3.1). Note that q is always an increasing function of α. As the
parameter a0 increases and b0 decreases, the curve q(α) approaches faster its asymptotic value of 1,
as we can see in the derivative at 0, which equals a0/b0.

1

1

π0

π1

1

1

π0

π1

1

1

π0

π1

Figure 4.3: Parabolic curves defined by (4.13a) (red) and (4.13b) (blue) for p = 0.6. In the first
case we have γ = 0.3 < 1/2 and q = 0.4. In the second case we have γ = 0.6 > 1/2 and q = 0.4.
In the third case we have γ = 0.6 and q = 0.02, so the condition (4.16) is violated and the only
intersection in the unit square is (1,1).

In particular, we can characterise explicitly the subcritical region in which extinction
happens almost surely as a function of γ, p and the probability q introduced above. The
proof of Theorem 4.3.5 is postponed in Section 4.10.

Theorem 4.3.5. The population initiated by a single cell of age 0 survives with positive
probability if and only if{

p ≤ 1

2

}
or
{
p >

1

2
and γ <

1

2

(
1 +

q

(2p− 1)(1− q)

)}
. (4.16)

In the interesting case p > 1/2 in which the vulnerable subpopulation would not be able
to survive on its own, the expression above evinces a trade-off between the repair dynamics
(conveyed by γ), and the ratio between the effect of the phenotypic plasticity (conveyed by
the odds of switching before dividing: q/(1−q)), and the strength of the environmental effect
(conveyed by the expected number of (net) lost individuals after each non-persister division:
1 − 2(1 − p) = 1 − 2p). On the other hand, we see that in order to ensure survival with
positive probability, the production of cells of type 0 (or equivalently, the efficiency of the
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Figure 4.4: Value of the extinction probability of a population initiated by a single non-persistant
cell (π0), numerically computed as the minimal solution to the system (4.13a)-(4.13b) for different
values of the environmental variable p (along the plots), γ (x axis) and q (y axis). For the scenarios
where p > 1/2, the green line represents the critical case of equality for Condition (4.16).

repair dynamics) is limited by the mortality of type 0 in a way that is inversely proportional
to the expected number of cell lost at each division. However, this upper bound can be
relaxed by an augmentation of the odds of switching before dividing.

Fig. 4.4 shows numerical solutions of this system. We can observe that as expected in
this setting, the extinction probabilities decrease as α increases (which makes q increase for
fixed β0), since type 1 is not submitted to death. Nonetheless, the probability γ to produce
type 0 progeny might introduce a significant risk of extinction, particularly when p is large.
However, this risk can be reduced by increasing q, i.e., by increasing the value of α relatively
to β0. Moreover, a pair of γ and q which can produce a persistent population with positive
probability at low p, can lead to extinction if the environment changes to a larger value
of p. In that context, having a bigger switch rate is of interest for the persistence of the
population, in order to escape from the risk region. This is specially true when the division
of tolerant cells produce more frequently vulnerable daughters, which are easily prone to
death.

Corollary 4.3.6. Let p > 1/2. Then the extinction probability of the population is at most
1
2
(1 − log 2), a value which is attained in the extreme case p = 1 where individuals of type

0 die almost surely at each division attempt.

Proof. The proof consists simply in calculating the area of the extinction region delimited
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by the complement of condition (4.16). Indeed, the probability that the population traits
belong to this region (so that the establishment probability is 0) is equal to∫∫

[0,1]2
1{γ> 1

2(1+
q

(2p−1)(1−q))}dqdγ =

∫ 2p−1
2p

0

dq

∫ 1

1
2(1+

q
(2p−1)(1−q))

dγ

=
1

2

(
p2 +

1

2p− 1
log

(
1− p(2p− 1)

2

))
.

We can see easily that it is an increasing function of p for p > 1/2 and thus its maximum
its attained for p = 1 which gives the value 1

2
(1− log 2).

Remark 4.3.7. A maximum evolutionary risk of 1
2
(1− log 2) ≈ 15.34% might seem not very

restrictive. However, one could argue that keeping a high value of q, i.e. a high phenotypic
plasticity, could be associated with a high energetic cost and other constraints not included
in our model, which would enlarge the zone of non viability.

Remark 4.3.8. Note that the previous computation can also be interesting in an evolutionary
framework, since it gives a measure of the capacity of random evolutionary rescue. If a
mutant cell appears with p > 1/2 and new characteristics (γ′, q′) that are independently and
uniformly distributed on the square [0, 1], the survival probability of its subpopulation will
be at least 1

2
(1 + log 2) and minimum for p = 1.

4.4 Long-time behaviour of the population and links with
the microscopic establishment condition

In the following we establish some fundamental links between necessary and sufficient con-
ditions for the establishment of a population issued from a single cell from both a probabilis-
tic approach based on the trajectories of Zt, and for a deterministic approach based on the
long-time behaviour of the semigroup Mt, which describes the expected value of the pop-
ulation dynamics, as defined below. Dichotomy properties linking the survival probability
with the behaviour of Mt have been studied in size-structured models by [27]. Numerical
studies have been performed in the same spirit by [59]. We show in particular that under
the survival conditions there is a positive Malthusian parameter λ > 0 such that the rescaled
dynamics e−λtMt converge to a non-zero stationary measure, and that this convergence is
at exponential rate.

Definition 4.4.1 (First-moment semigroup and vector representations). Let us define over
the space of bounded Borel functions Bb(R+ × {0, 1}), the first-moment semigroup Mt :
Bb(R+ × {0, 1})→ Bb(R+ × {0, 1}) by

Mtf(a, i) = Eδ(a,i) [⟨Zt, f⟩] , ∀(a, i) ∈ R+ × {0, 1} (4.17)

and for all signed Borel measure µ ∈ M(R+ × {0, 1}) we define µMt ∈ M(R+ × {0, 1}) as
the measure which, for all f ∈ Bb(R+ × {0, 1}), verifies the duality relation

⟨µMt, f⟩ = ⟨µ,Mtf⟩ =
∫
R+×{0,1}

Mtf(a, i)µ(da, di). (4.18)
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We give also a vector representation, which will be useful in the sequel. Let us write f =
(f(·, 0), f(·, 1)) ∈ (Bb(R+))

2 and define for all a ≥ 0 the matrix semigroup Mt : (Bb(R+))
2 →

(Bb(R+))
2 as

Mtf(a) = (Mtf(a, 0), Mtf(a, 1)) ∈ R2.

Analogously, for all Borel setA of R+, we let µ(A) = (µ(A×{0}), µ(A×{1})) ∈ (M(R+))
2

and define
µMt(A) = (µMt(A× {0}), µMt(A× {1})) ∈ R2.

Taking expectations in the the semi-martingale decomposition (4.41) associated with
Zt, we easily show that the infinitesimal generator Q associated to Mt such that for all
a ≥ 0

d

dt
Mtf(a) = Mt (Qf) (a) = Q (Mtf) (a)

is given by
Qf(a) = f ′(a)−D(a)f(a) + 2B(a)f(0) (4.19)

where f ′(a) := (∂af(a, 0), ∂af(a, 1)) and

B(a) =

[
(1− p)β0(a) 0
γβ1(a) (1− γ)β1(a)

]
and D(a) =

[
α + β0(a) −α

0 β1(a)

]
. (4.20)

An useful alternative approach is the following representation of Mtf as the mild solution
to a renewal equation:

Proposition 4.4.2 (Forward Equation). For all test function f ∈ (Bb(R+))
2 in the form

introduced above, the right action of the semigroup Mtf is solution to the renewal equation,
for all a ≥ 0

Mtf(a) = Ψ(a, a+ t)f(a+ t) + 2

∫ t

0

K(a, a+ s)Mt−sf(0)ds, (4.21)

where the matrix Ψ(s, t) is given by

Ψ(s, t) =

[
ψ0(s, t) αψ0 ⋆ ψ1(s, t)

0 ψ1(s, t)

]
(4.22)

and the kernel K is given by

K(s, t) =

[
(1− p)β0(t)ψ0(s, t) + γαβ1(t)ψ0 ⋆ ψ1(s, t) (1− γ)αβ1(t)ψ0 ⋆ ψ1(s, t)

γβ1(t)ψ1(s, t) (1− γ)β1(t)ψ1(s, t)

]
. (4.23)

Recall that ψ0 and ψ1 have been defined respectively in (2) and (3). The first column of the
matrix kernel K corresponds to the possible outcomes for individuals of type 0, which can
persist with probability (1−p) or switch at rate α and then give offspring of type 0 or 1 with
probabilities γ and 1− γ respectively. The second column corresponds to the individuals of
type 1, whose contributions are pondered by γ or 1− γ as recalled above.
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Remark 4.4.3. In particular, by setting a = 0, t 7→Mtf(0) is the unique fixed point of

Mtf(0) = Ψ(0, t)f(t) + 2

∫ t

0

K(0, s)Mt−sf(0)ds, (4.24)

and we can then obtain Mtf(a) for all a ≥ 0 injecting this fixed point into the integral term
of (4.21).

The proof of Proposition 4.4.2 is postponed in Section 4.11.
Analogously, the left action of the semigroup can be identified to the measure solution

to the following PDE.

Proposition 4.4.4 (Multitype renewal PDE). For all initial vector measure µ ∈ (M(R+))
2,

the vector measure µMt is equal to the measure-valued solution n(t, ·) of the multitype McK-
endrick–von Foerster Equation

∂tn(t, a) = −∂an(t, a)−D⊤(a)n(t, a)

n(t, 0) = 2
∫ +∞
0

B⊤(a)n(t, da)

n(0, ·) = µ

(4.25)

with B⊤ and D⊤ the transposed matrices of the ones defined by (4.20).
Moreover, if µ are absolutely continuous with respect to the Lebesgue measure, then µMt

is a strong solution to (4.25).

Then, solving (4.25) by variation of parameters we have that the vector measure µMt

admits, for any test function f ∈ Bb(R+), the representation

⟨µMt, f⟩ =
∫ t

0

f(a)Ψ⊤(0, a)η(t− a)da+
∫ +∞

t

f(a)Ψ⊤(a− t, a)µ(a− t)da. (4.26)

The function Ψ(s, t) appears in this new context as the fundamental matrix solution to the
ODE {

∂tΨ
⊤(s, t) = −D⊤(t)Ψ⊤(s, t), t > s

Ψ(s, s) = I

(4.27a)
(4.27b)

with I the 2×2 identity matrix, and η is defined by the boundary condition of (4.25), giving

η(t) = 2

∫ t

0

B⊤(a)Ψ(0, a)η(t− a)da+ 2

∫ +∞

t

B⊤(a)Ψ(a− t, a)µ(a− t)da. (4.28)

In particular, for an initial condition µ = (c0δ0, c1δ0) consisting on c0 initial individuals of
type 0 with age 0, and c1 initial individuals of type 1 with age 0, we have that η is solution
to the linear Volterra equation of the second kind

η(t) = g(t) + 2

∫ t

0

K⊤(0, a)η(t− a)da. (4.29)

128



4.4. LONG-TIME BEHAVIOUR OF THE POPULATION AND LINKS
WITH THE MICROSCOPIC ESTABLISHMENT CONDITION

since indeed B⊤(a)Ψ(0, a) = K⊤(0, a) for K introduced in (4.23). Meanwhile, the inhomo-
geneous term is given by

g(t) = 2B⊤(t)Ψ(0, t)

(
c0
c1

)
= 2K⊤(0, t)c (4.30)

We can interpret η(t) as the instantaneous number of offspring produced at time t. The
term g(t) gives the contribution of the initial individuals that have survived for the whole
interval [0, t] before dividing. The integral term counts the contributions of the individuals
of age a ∈ [0, t], this is, that were born t− a ago.

We are interested in the long-time behaviour of the semigroup Mt in the case when
we have survival of the population, using some classical ideas from the spectral theory
of C0-semigroups, adapting the approach followed by [143] to age-structured population
dynamics, and more recently applied by [108] to study the equilibrium of a birth-death
model of ageing, also formulated as an individual-based stochastic model. To this end, we
set ourselves on the Banach space (L1(R+))

2 equipped with the norm ||f ||1 =
∫ +∞
0
|f(a, 0)|+

|f(a, 1)|da. We also write ||·||1 for vectors and matrices, meaning, as usually: ||x||1 =∑
i |xi|, and ||A||1 = maxj

∑
i |Aij|. We then consider Mt : (L

1(R+))
2 → (L1(R+))

2, which
is the mild solution of (4.21) on (L1(R+))

2. The existence of such semigroup is a direct
consequence of the well-possedness of the measure-valued process Zt and the control of its
first moment as stated in Prop. 4.8.2. Our main convergence result is then the following:

Theorem 4.4.5. Under Assumptions 4.2.1 and if the survival conditions established by
(4.16) are verified, there is a unique triplet of a positive function h ∈ (L1(R+))

2, a positive
Radon measure ν ∈ (M(R+))

2, normalised such that ⟨ν, 1⟩ = 1 and ⟨ν,h⟩ = 1, and a
positive constant λ > 0 such that for all f ∈ (L1(R+))

2

||e−λtMtf − ⟨ν, f⟩h||1 ≤ ce(ω−λ)t||f − ⟨ν, f⟩h||1. (4.31)

The positive number λ is called the Malthusian parameter or the population fitness and is
the largest real root of the characteristic equation

det (F(λ)− I) = 0, (4.32)

where

F(λ) := 2

∫ +∞

0

e−λaK(0, a)da.

Moreover, both coordinates of ν admit a density with respect to the Lebesgue measure.

An important role is played by the matrix

K∞ := F(0) = 2

∫ +∞

0

K(0, a)da,

whose spectral properties determine the long-time behaviour of Mt. Lemmas 4.4.6 and
4.4.7 will be useful to prove Theorem 4.4.5 in Section 4.11. Furthermore, they show
how the conditions for survival with positive probability derived in Theorem 4.3.5 and the
existence of a positive eigenvalue λ > 0 are linked through the spectral properties of K∞.
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Lemma 4.4.6. The survival condition (4.16) is equivalent to have to ρ(K∞) > 1

Lemma 4.4.7. Under Assumptions 4.2.1, there is a unique λ > 0 such that ρ(F(λ)) = 1
(in particular, λ is solution to the characteristic equation (4.32)) if and only if the survival
conditions established by (4.16) are verified.

We conclude this section by noticing an useful bound for the value of λ, which is natural
to obtain when the division rates are uniformly bounded.

Remark 4.4.8. We have λ ≤ b̄, with b̄ the bound on the division rate of Assumption (A1)
of 4.2.1.

4.5 Sensitivity of the population fitness with respect to
phenotypic switching strategies

In the following we denote by Qα,γ the generator (4.19) and (λα,γ,να,γ,hα,γ) the triplet of
elements verifying Theorem 4.4.5 for a given pair of parameters (α, γ) in the survival region
defined by Proposition 4.3.5. First, we show that the eigenfunction (α, γ) ∈ R+ × [0, 1] 7→
hα,γ ∈ (L1(R+))

2 is indeed continuous in α and γ. This will allow us to study the variations
of the Malthusian parameter with respect to α and γ.
The proofs of next lemmas and propositions are postponed in Section 4.11.

Lemma 4.5.1. Under Assumptions 4.2.1 and if β0, β1 ∈ C(R+), then h ∈ C1(R+, R2
+).

Lemma 4.5.2. Under Assumptions 4.2.1, for all fixed a ≥ 0, the map (α, γ) 7→ hα,γ(a) is
continuous for the uniform norm.

Proposition 4.5.3 characterises the partial variations of the population growth rate λα,γ
with respect to α and γ.

Proposition 4.5.3. For fixed (α, γ) and (λα,γ,να,γ,hα,γ) the triplet of eigenelements asso-
ciated to Qα,γ we have that both α 7→ λα,γ and γ 7→ λα,γ are continuously differentiable
functions such that

∂αλα,γ =

∫ +∞

0

(hα,γ(a, 1)− hα,γ(a, 0)) να,γ(da, 0), (4.33)

∂γλα,γ = 2 (hα,γ(0, 0)− hα,γ(0, 1))
∫ +∞

0

β1(a)να,γ(da, 1). (4.34)

Let us recall that the eigenfunction h corresponds to Fisher’s reproductive value [55]:
h(a, i) is a measure of the contribution of an individual of age a and type i to the future
growth of the population. Indeed, the longtime behaviour of the expected total number of
individuals issued from an individual of age a and type i is Mt1(a, i) and by Theorem 4.4.5
is given by eλth(a, i). Thus, Equations (4.33) and (4.34) show that the value of the fitness
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response to variations in α and γ depends on the difference in the reproductive values of
type 1 an type 0.

In particular, in the case of the variations with respect to parameter γ, we see that the
sign of ∂γλα,γ depends only on the sign of the difference between the newborn’s reproduc-
tive values of type 0 and type 1, which are given by the vector hα,γ(0). Moreover, Proposi-
tion 4.5.4 below shows that increasing the probability γ is beneficial for the growth of the
population if and only if the population growth rate is already larger than the population
growth rate associated with the subpopulation of type 1. Then, exploiting the equivalency
of Lemma 4.4.6, we can link the variations of the Malthusian parameter with the variations
of the establishment probability . This will allow to show that increasing γ is detrimental
from a Malthusian point of view only if the death probability p is greater than some critical
value p̄, i.e. if the environmental stress is high enough. In contrast, increasing γ is always
detrimental from the point of view of the establishment probability. This is also shown by
the numerical simulations presented in Fig. 4.7. We will see later that it is not true in the
more general case where the environment changes in time.

Proposition 4.5.4. For (α, γ) in the survival region defined by Proposition 4.3.5, we have
the following implicit equivalence

∂γλα,γ > 0 ⇐⇒ λα,γ > λ∗1
∂γλα,γ < 0 ⇐⇒ λα,γ < λ∗1

where λ∗1 is the population growth rate of subpopulation 1 alone, i.e., the unique solution to

1 = 2

∫ +∞

0

e−λ∗
1aβ1(a)ψ1(0, a)da.

Corollary 4.5.5. If λα,γ=0 > λ∗1 then for all γ ∈ [0, 1[, ∂γλα,γ > 0.

Proof. Let us recall that we denote ξi(λ) = Eδ(0,i)

[
e−λTdiv

]
the Laplace transform associ-

ated to the division times of type i ∈ {0, 1}. In the case γ = 0, the matrix F(λ) becomes
triangular, and thus the characteristic equation

det (I− F(λα,γ)) = 0

reduces to
(2(1− p)ξ0(α + λ)− 1) (2ξ1(λ)− 1) = 0,

which admits as solutions λ∗1 and some λ̃0 ∈ R such that

2(1− p)ξ0(α + λ̃0)− 1 = 0,

represented in Fig. 4.5. By Theorem 4.4.5, the fitness λα,γ=0 corresponds then to the
maximum value between λ∗1 and λ̃0. If λ∗1 < λ̃0 (or equivalently, λα,γ=0 > λ∗1) , by Proposition
4.5.4, ∂γλα,γ|γ=0 > 0. And then, by the continuity of γ 7→ ∂λλα,γ, which follows easily from
the continuity properties exhibited in the proof of Proposition 4.5.3, ∂γλα,γ > 0 for all
γ ∈ [0, 1[.
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λ

E[exp(−λTdiv)]

ξ0(λ)

ξ1(λ)
(1− p)ξ0(α + λ)

λ∗1 λ∗0λ̃0

1

(1− p)(1− q)
1/2

Figure 4.5: Laplace transform of division times in the case γ = 0. If (1− p)(1− q) is small enough
(for example, if p > 1/2 or q > 1/2, but also in more general cases, as represented in the figure),
then λ∗

1 > λ̃0 and the largest solution to the characteristic equation is the type 1 growth rate λ∗
1.

On the other hand, if p and q are sufficiently small, then the population growth rate might be larger
than λ∗

1, and then by Corollary 4.5.5, ∂γλα,γ > 0 for all γ ∈ [0, 1[.

Notice however that if λ∗1 ≥ λ̃0, then λα,γ = λ∗1 and thus by Proposition 4.5.4, ∂γλα,γ|γ=0 =
0. Therefore, we cannot conclude about the sign of ∂γλα,γ for γ ∈ (0, 1). This is the case
represented in Fig. 4.5, and which arrives, in particular, in the interesting case p > 1/2.
Indeed, if p > 1/2, since ξ0(λ) ∈ [0, 1] for all λ > 0, the root λ̃0 is non positive, and a for-
tiori λ∗1 > λ̃0. For that case, however, we can use the results derived for the establishment
probability in Section 4.3 to obtain the following monotonicity result, proven in Section
4.11.

Proposition 4.5.6. Under the supplementary Assumption 4.2.4, for all α ≥ 0 there exists
a unique critical value p̄ ≤ 1/2 such that for all γ ∈ (0, 1)

∂γλα,γ > 0 ⇐⇒ p < p̄,

∂γλα,γ < 0 ⇐⇒ p > p̄.

The proof is postponed to Section 4.11. Figure 4.6 summarises the results of Proposi-
tions 4.5.4 and 4.5.6.

Corollary 4.5.7. For all α > 0 and γ ∈ (0, 1), we have hα,γ(0, 1) > hα,γ(0, 0) if p > p̄, and
hα,γ(0, 1) ≤ hα,γ(0, 0) otherwise.

Proof. It follows directly from Proposition 4.5.6 and the explicit form of ∂γλα,γ obtained in
Proposition 4.5.3.

Corollary 4.5.7 shows that under high stress, the reproductive value hα,γ(0, 0) of new-
born individuals of type 0, i.e., the contribution of type 0 individuals to the asymptotic size
of the population, is always less important than the reproductive value of individuals of type
1. Indeed, even if they take a long time to divide and if the switch events are rare, the

132



4.5. SENSITIVITY OF THE POPULATION FITNESS WITH
RESPECT TO PHENOTYPIC SWITCHING STRATEGIES

γ

λα,γ

p > p̄α

p < p̄α

λ∗1

0

Figure 4.6: Illustration of Propositions 4.5.4 and 4.5.6.

fact that type 1 individuals are perfectly adapted to the stress environment (in the sense
that they reproduce without dying), make that they end up contributing statistically more
to the population size. It is not hard to imagine that this is not generally true when indi-
viduals of type 1 happen to be less adapted. For example, under a changing environment,
the subpopulation of type 0 can be allowed to proliferate if the stress is reduced (p < p̄) at
some intervals of time. This could be sufficient to make the contribution of type 0 larger in
the asymptotic population. In the next section we explore an extension of the model where
this happens. We will consider the case where the death probability p is allowed to vary
periodically in time.

Surprisingly, if we look at the establishment probability, we do not necessarily observe
the same variations with respect to γ. Proposition 4.5.8 below shows that increasing γ will
increase the extinction probability, for all p ∈ [0, 1] (and thus even for p < p̄):

Proposition 4.5.8. For all p ∈ [0, 1], α > 0, γ ∈ [0, 1[, let (πα,γ
0 , πα,γ

1 ) ∈ [0, 1]2 the minimal
solution to (4.13a)-(4.13b). Then

∂γπ
α,γ
0 > 0 and ∂γπ

α,γ
1 > 0.

Proof. Note that in the system (4.13a)-(4.13b) characterising the extinction probability,
only (4.13b) depends on the value of γ. Moreover, for (π0, π1) ∈ (0, 1)2 verifying (4.13b)
we have

π1 =
1− 2γ(1− γ)π0 −

√
1− 4γ(1− γ)π0

2(1− γ)2
,

and therefore, for all fixed value of π0 we have

∂γπ1 =

√
1− 4γ(1− γ)π0 + (1− γ)π0

(
1 + 2γ −

√
1− 4γ(1− γ)π0

)
− 1

(1− γ)3
√

1− 4γ(1− γ)π0
,

which is always non-negative for γ ∈ [0, 1] and π0 ∈ [0, 1], since in that case π0 ≤ 1/(4γ(1−
γ)). Moreover, from (4.13a) we obtain that π1 is an increasing function of π0. Thus, for
(π0, π1) solution of the system, we have both ∂γπ0 > 0 and ∂γπ1 > 0.
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In particular, only in the case p > p̄, both the survival probability 1 − πα,γ
i and the

Malthusian parameter λα,γ decrease with respect to γ. Fig. 4.4 and 4.7 give a quantitative
idea of this behaviour. Fig. 4.4 shows numerical solutions of the system (4.13a)-(4.13b),
where we observe the monotonicity with respect to the parameter γ. On the other hand, Fig.
4.7 shows numerical approximations of λα,γ obtained from the numerical solution to PDE
4.25. This result is in contrast to [59], where the monotonic dependence observed in the
survival probability translated to a monotonic dependence also in the population fitness. In
that sense, our result is similar to [25], where a non-monotonic dependence of the population
fitness was found on the growth and reproduction parameters in a size-structured growth-
fragmentation model. As discussed by [59], this can be explained by a loss of monotonicity
in the survival probabilities. In our case, albeit the survival probability varies monotonically
with respect to γ (Proposition 4.5.8), the monotonicity is lost by the coexistence of two
types. In Section 4.11.6 we exhibit this loss of monotonicity using probabilistic arguments.

4.6 Sensitivity of the population fitness under periodic
stress

We consider at last the case where the death probability p evolves periodically in time. Let
T > 0 a time period and t ∈ [0, T [ 7→ p(t) ∈ [0, 1] a T -periodic function. Only this term is
allowed to fluctuate in time; α and γ are considered fixed traits of the population and remain
constant. Since deaths occur at birth, only the birth matrix B is affected and we define
thereby

B(t, a) :=

[
(1− p(t))β0(a) 0

γβ1(a) (1− γ)β1(a)

]
.

Analogously, we define the time-inhomogeneous generator

Q(t)f(a) := f ′(a) + 2B(t, a)f(0)−D(a)f(a), (4.35)

whose adjoint operator is for every t ≥ 0

Q∗(t)n(a) := −n′(a)−D⊤(a)n(a),

and has time-dependent domain

D(Q∗(t)) =

{
n ∈ W 1,∞(R+) : n(0) = 2

∫ +∞

0

B⊤(t, a)n(a)da

}
.

We consider as well the time-inhomogenenous associated matrices

F(t, λ) := 2

∫ +∞

0

e−λaΨ(0, a)B(t, a)da.

As Perron-Frobenious Theorem in the previous case, now Floquet’s Theorem (see for ex-
ample [119], p.163) allows us to construct the eigenelements that will drive the long-time
behaviour of the periodic dynamics.
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Proposition 4.6.1. Let p : R+ → [0, 1] a T -periodic continuous function. Under the same
set of Assumptions 4.2.1 there exists a unique triplet of eigenelements (λT ,ν,h) where λT ∈
R and ν = ν(t, da) and h = h(t, da) are time-dependent T -periodic positive continuous
functions such that

−∂th(t, a) = Q(t)h(t, a)− λTh(t, a),
∂tν(t, a) = Q∗(t)ν(t, a)− λTν(t, a) , ν(t, ·) ∈ D(Q∗(t)),∫ T

0

∫ +∞

0

ν(t, a)dadt = 1 ,

∫ T

0

∫ +∞

0

h(t, a)ν(t, a)dadt = 1.

(4.36a)
(4.36b)

(4.36c)

Remark 4.6.2. We recall that the Floquet dominant eigenvalue λT gives indeed the growth
rate of the population. Set

Ms,tf(a, i) = E
[
⟨Zt, f⟩|Zs = δ(a,i)

]
the time-inhomogenenous semigroup associated to Q(t) and denote Ms,t its vectorial form,
as in the previous sections. Then, for h(t, ·) solving (4.36a), we have immediately that

Ms,th(s, a) = eλT (t−s)h(t, a).

Now, as in Section 4.5, we study the variations of λT with respect to the model param-
eters. Using the normalisation conditions (4.36c) and repeating the same calculations as in
the proof of Lemma 4.5.1 and Proposition 4.5.3 we obtain the Proposition 4.6.3 below.

Proposition 4.6.3. Let (λT,α,γ,να,γ,hα,γ) the triplet of Floquet eigenelements associated to
T -periodic Qα,γ(t). We have

∂αλα,γ =

∫ T

0

∫ +∞

0

(hα,γ(t, a, 1)− hα,γ(t, a, 0)) να,γ(t, a, 0)dadt, (4.37)

∂γλα,γ = 2

∫ T

0

(hα,γ(t, 0, 0)− hα,γ(t, 0, 1))
(∫ +∞

0

β1(a)να,γ(t, a, 1)da

)
dt (4.38)

Proof. Follows directly from (4.36c) and repeating the same calculations as in the proof of
Proposition 4.5.3 . The continuity of (α, γ) ∈ R+ × [0, 1] 7→ hα,γ(t, ·) for all fixed t ≥ 0;
follows also directly from Lemma 4.5.1.

Remark 4.6.4. We compare this result with the one obtained in the constant environ-
ment case. We focus in the variations with respect to parameter γ. In the constant en-
vironment case we saw that if p > 1/2 then increasing γ is always detrimental from a
Malthusian point of view (see Proposition 4.5.6 and Fig. 4.7), since the reproductive
value hα,γ(0, 1) of type 1 is always larger than the reproductive value hα,γ(0, 0) of type
0 when the level of stress is constant. However, we see now that in the fluctuating case
the sign of ∂γλα,γ depends on some time-average of the reproductive value difference. In
particular, this difference is weighted proportionally to the mean division rate of type 1,
β̄1(t) :=

∫ +∞
0

β1(a)να,γ(t, a, 1)da, observed at that time. Hence, if there are times t at which
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Figure 4.7: Value of the Perron-Frobenius eigenvalue λ as function of γ (abscissa) and q (ordinate),
obtained from numerical simulations of (4.25) under fixed p varying from p = 0 to p = 1, from left
to right.

Figure 4.8: Value of the Floquet eigenvalue λT for the value of T indicated in the head of the panel,
as function of γ (abscissa) and q (ordinate), obtained from numerical simulations of (4.25). The
death probability p oscillates between 0 and 1 (good and bad phases), passing a period T/2 in each
value. The division times are exponentially distributed with β0 ≡ 10 and β1 ≡ 0.1. We see how
the optimal set of parameters and the non-establishment region change in a non-trivial way. In
particular, increasing the value of γ becomes interesting from a Malthusian point of view as the
length of good and bad phases increases. However this increments the extension of the non-viability
region.

p(t) ≤ 1/2, such that the reproductive value of type 0 is able to be larger than the reproduc-
tive value of type 1, it is possible for the average difference to be positive. In particular, the
coincidence of these times with times at which the mean type 1 division rate β̄1(t) is large,
can lead to positive values of ∂γλα,γ. This comes off naturally from a heuristic reasoning.
Indeed, big values of β̄1(t) and γ would lead to a burst in the creation of individuals of type
0 at time t, which possesses the biggest relative advantage at that time. In Fig. 4.8 , simu-
lations of PDE (4.25) with T -periodic p illustrate this qualitative observation for different
values of T .

Finally, we can also compute the extinction probabilities. However, the time-dependent
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value of p breaks the Markovian property at the division stopping times that allows us
to reduce the problem to a simple algebraic system in the constant environment case, and
obtain the explicit description of the survival region. The new system however can be solved
numerically.

Proposition 4.6.5. Let

πi(s, a) := P
(
∃t ≥ s : Nt = 0|Zs = δ(i,a)

)
.

Then, we have that (π0, π1) is the minimal solution on [0, 1]2 of the system

π0(s, a) =

∫ +∞

0

p(s+ t)β0(a+ t)ψ0(a, a+ t)dt

+

∫ +∞

0

π1(s+ t, a+ t)αψ(a, a+ t)dt

+

∫ +∞

0

(π0(s+ t, 0))2 (1− p(s+ t))β0(a+ t)ψ0(a, a+ t)dt

π1(s, a) =

∫ +∞

0

(γπ0(s+ t, 0) + (1− γ)π1(s+ t, 0))2 β1(a+ t)ψ1(a, a+ t)dt

Moreover t 7→ πi(t, ·) is T -periodic.

Proof. It follows directly repeating the steps in Prop. 4.3.5

4.7 Discussion and outlook
We have introduced a stochastic bi-type age-structured population model to describe the
stress-response dynamics of E. coli. Some experimental studies have been able to quantify
the fitness response of E. coli populations under low-genotoxicity environment (p ≤ 1/2)
and perturbations of the SOS response genetic circuit, providing some hints of validation
for our approach. In the recent work [92], the authors measure the population growth rates
(λ) and survival probability (1−π) in a panel of E. coli strains with different SOS response
activation parameters, by introducing mutations into the lexA promoter, responsible for the
transcriptional inhibition of SOS proteins trought the expression of the repressor protein
LexA. The authors analyse their experimental results within the framework of a low dimen-
sional chemical reaction model with three parameters that they estimate, producing survival
curves (Fig. 4A ibid.) and a quantitative parameter-fitness landscape from the empirical
population growth rates (Figs. 4B, 4C and 5 ibid.). Two main effective biomolecular param-
eters drive the model considered by the authors. The first one is the effective expression rate
of lexA (β/α therein), which can be related to our switching rate α, since it quantifies the
speed at which the SOS response can be initiated. The second parameter is the repression
affinity of LexA for its own promoter (k therein), which quantifies the strength at which
the SOS response “turns off" when the stress is removed. Thus, it can be related to our
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coarse-grain parameter γ that conveys the “repair" probability with which tolerant indi-
viduals of type 1 switch back to vulnerable individuals of type 0. Although these links are
only suggestive at the very most, specially since in our specific and minimal model the type
switches are coupled to the division dynamics, they allow to interpret Fig. 5 of [92] under
the light of our Figs. 4.7 and 4.8 and our general results. Interestingly, [92] suggests the
existence of a trade-off between the SOS repression and SOS expression rates, that pro-
duces two distinct regimes in the variations of the empirical relative fitness, in a way that
it is similar to the trade-off observed between our parameters γ and q. Indeed, they show
that lowering the steady-state concentration of LexA (linked to our switching rate α) and
altering the repressive activity of LexA (their k, linked to our γ) can increase fitness after a
critical dose of DNA damage (in our words, when p > p̄α), but results in decreased fitness
with lower amounts of DNA damage (p < p̄α), echoing the result of Proposition 4.5.6. This
might indicate a much more general parameter-fitness trade-off for other stress-response
and negatively autoregulated response mechanisms.

We have shown in Propositions 4.5.6 and 4.5.8 that measuring the dependence of the
extinction probability of a population issued from a single cell and of the population growth
rate on variations in the stress repair probability γ can lead to seemingly opposite con-
clusions, even in our very simplistic model. Albeit increasing γ will always increase the
extinction probability, even under sublethal stress, it might increase the population fitness
if p is low enough, so that creating vulnerable but fast-proliferating type 0 individuals is
advantageous. This raises some methodological questions about the non trivial equivalence
of measuring the response of bacterial proliferation using single-cell and bulk techniques in
sublethal conditions. For instance, in the context of antibiotic susceptibility studies, param-
eter variations might not have the same effects when looking at the population growth rate
in longitudinal experiments, and when looking at the survival outcome of microcolonies.
Our mathematical results highlight the differences that might emerge from these two acqui-
sitions. Indeed, this difference can then be explained by the bias shown here, rather than
by actual biological discrepancies.

Finally, we have seen that the fitness landscape change when the environmental stress
is allowed to fluctuate. In particular, it is possible that phenotypic plasticity strategies that
would have lead to almost sure extinction in constant environment, become advantageous in
the periodic case. The evolutionary paths over this fitness landscape should then take into
account this variability. This will be subject of future works.

4.8 Construction and well-posedness of Zt
Definition 4.8.1 (Pathwise representation of the population process). Let Z0 be a counting
measure on R+×{0, 1}, of the form of (4.1), andN (du, dk, dz, dω) an independent Poisson
point measure over R+×N∗×R+× [0, 1]2 with intensity du n(dk) dz dω, with n the counting
measure on N∗. Z0 represents the initial population andN clocks the division and switching
times that occur in some time interval measured by the integrating variable u. These events
are measured for each individual k independently and happen proportionally to their division
and switching rates, which are measured by the integrating variable z. Finally, the two
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independent uniform random variables ω = (ω1, ω2) determine, respectively, the outcome of
the first and the second daughter.

Thus, under the canonical filtration (Ft)t≥0 generated by (Z0,N ), we define the process
(Zt)t≥0 as

Zt =

N0∑
k=1

δ(Ak(0)+t,Ik(0))

+

∫ t

0

∫
N∗×R+×[0,1]2

1{k≤Nu−}

{
1{z≤α(1−Ik(u−))}

[
δ(Ak(u−)+(t−u),1) − δ(Ak(u−)+(t−u),Ik(u−))

]
+ 1{

0<z−α(1−Ik(u−))≤βIk(u−)(Ak(u−))
}(− δ(Ak(u−)+(t−u),Ik(u−))

+ 1Ik(u−)=0

[
1ω2>pδ(t−u,0) + 1ω3>pδ(t−u,0)

]
+ 1Ik(u−)=1

[
1ω2≤γδ(t−u,0) + 1ω2>γδ(t−u,1) + 1ω3≤γδ(t−u,0) + 1ω3>γδ(t−u,1)

])}
N (du, dk, dz, dω).

(4.39)

Note that
Zt(da, di) = Zt(da, {0})δ0(di) + Zt(da, {1})δ1(di).

We explain now each term of the RHS of (4.8.1). The first line represents the deterministic
evolution of the population when no random events happen before time t. The second line
represents the switching events, that occur only for individuals of type Ik = 0 at rate α, and
gives a new individual of type 1 with identical age while removing the previous individual
of type 0 from the population. The third and four lines represent the divisions, which
remove the divided cell from the population. If the mother type is 0 (third line), we add
independently two cells of type 0, but only with probability 1−p each. If the mother type is
1 (fourth line) we add independently two cells whose type is decided by a Bernoulli random
variable of parameter 1− γ.

We show that the stochastic process (Zt)t is well-defined under Assumptions 4.2.1:

Proposition 4.8.2 (Well-posedness and first-moment control). Under Assumptions 4.2.1,
and if E

[∫
(Z0(da, {0}) + Z0(da, {1}))

]
< ∞ and E

[∫
a(Z0(da, {0}) + Z0(da, {1}))

]
< ∞,

then the SDE (4.8.1) has a well-posed solution (Zt)t≥0 ∈ D (R+,M ({0, 1} × R+)) which
verifies for every t > 0

E

[
sup
s∈[0,t]

∫
(1 + a)(Zs(da, {0}) + Zs(da, {1}))

]
≤E

[∫
(1 + a)(Z0(da, {0}) + Z0(da, {1}))

]
× exp

(
(b̄+ 1)t

)
< +∞. (4.40)

Proof. The proof is classical for populations with uniformly bounded birth rates, a suitable
sequence of stopping times and Gronwall inequality to conclude. See for example [140],
and Appendix A.1 for the case with unbounded birth rates under the adder assumption.
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Using the Compensated Poisson Point Measure associated to N and Ito’s formula for
semi-martingales [80] we can derive the following representation for ⟨Zt, f⟩.

Proposition 4.8.3 (Semi-martingale decomposition). Under control assumptions for the mo-
ments of Z0 and for control assumptions for β 2.1, Zt is well-posed for t ∈ [0, T ] for any
T > 0. Moreover, for any f ∈ C1,·(R+ × {0, 1}), we can write for any t ≥ 0∫

(f(a, 0)Zt(da, {0}) + f(a, 1)Zt(da, {1})) =
∫
(f(a, 0)Z0(da, {0}) + f(a, 1)Z0(da, {1}))

+

∫ t

0

∫
(Qf(a, 0)Zs(da, {0}) +Qf(a, 1)Zs(da, {1}))ds+Mf

t

(4.41)

where Mf
t is a squared-integrable Ft-martingale and the infinitesimal generator Q is de-

fined as

Qf(a, i) = ∂af(a, i) + (1− i)α(f(a, 1)− f(a, 0))− βi(a)f(a, i)
+ 2(1− i)(1− p)βi(a)f(0, 0) + 2iβi(a)(γf(0, 0) + (1− γ)f(0, 1))

(4.42)

We can write Proposition 4.8.3 in an abbreviated vectorial form. For all f : R+ ×
{0, 1} → R which is C1 in the first coordinate, we pose f(a) = (f(a, 0), f(a, 1)) and anal-
ogously f ′(a) = (∂af(a, 0), ∂af(a, 1)). Then, we can write for f ∈ (C1(R+))

2, Qf =
(Qf(a, 0),Qf(a, 1)) with Q given by (4.19).

4.9 Proofs of Section 4.3

4.9.1 Proof of Theorem 4.3.2
We compute the extinction probability in a general way that will be useful when time inho-
mogeneity is included in Sections 4.6 and 4.12, this is, when p is a periodic function instead
of a constant. Note however that since for now p is fixed, we could have shown that the ex-
tinction probability of Zt equals the extinction probability of some embedded discrete-time
branching process giving the number of particles at the n-th generation, which is no other
than a multitype Galton-Watson process [5].

Proof. Conditioning with respect to the possible outcomes of the first jump, we have

π(a, i) = Pδ(a,i) (ZT = 0) + Pδ(a,i) (∃t > T : Nt = 0, ZT ̸= 0)

= Pδ(a,i) (ZT = 0) + Pδ(a,i) (∃t > T : Nt = 0, ZT = δa+T,1)

+ Pδ(a,i)

(
∃t > T : Nt = 0, ZT = δ(0,I1) + δ(0,I2)

)
.

Applying the strong Markov property on the stopping time T gives

π(a, i) = Pδ(a,i) (ZT = 0) + Eδ(a,i)

[
Pδ(a+T,1)

(∃t > 0 : Nt = 0)1ZT=δa+T,1

]
+ Eδ(a,i)

[
Pδ(0,I1)+δ(0,I2)

(∃t > 0 : Nt = 0)1ZT=δ(0,I1)+δ(0,I2)

]
,
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which by the independence of the processes starting from δ(0,I1) and δ(0,I2), gives

= Pδ(a,i) (ZT = 0) + Eδ(a,i)

[
Pδ(a+T,1)

(∃t > 0 : Nt = 0)1ZT=δa+T,1

]
+ Eδ(a,i)

[
Pδ(0,I1)

(∃t > 0 : Nt = 0)Pδ(0,I2)
(∃t > 0 : Nt = 0)1ZT=δ(0,I1)+δ(0,I2)

]
= Pδ(a,i) (ZT = 0) + Eδ(a,i)

[
π(a+ T, 1)1ZT=δa+T,1

]
+ Eδ(a,i)

[
π(0, I1)π(0, I2)1ZT=δ(0,I1)+δ(0,I2)

]
.

Now, using Lemma 4.2.3, we obtain that

π(a, i) = 1i=0 p

∫ +∞

0

β0(a+ t) exp

(
−
∫ t

0

β0(a+ u)du− αt
)
dt

+ 1i=0

∫ +∞

0

π(a+ t, 1) α exp

(
−
∫ t

0

β0(a+ u)du− αt
)
dt

+

∫ +∞

0

βi(a+ t) exp

(
−
∫ t

0

βi(a+ u)du− (1− i)αt
)
dt
{
1i=0(1− p)π(0, 0)2

+ 1i=1 (γπ(0, 0) + (1− γ)π(0, 1))2
}
. (4.43)

In particular, doing a = 0, we obtainπ0 = π(0, 0) = pq′ + (1− p)q′π2
0 +

∫ +∞

0

π(t, 1) α exp

(
−
∫ t

0

β0(u)du− αt
)
dt,

π1 = π(0, 1) = (γπ0 + (1− γ)π1)2,

(4.44)

(4.45)

with

q′ =

∫ +∞

0

β0(t) exp

(
−
∫ t

0

β0(u)du− αt
)
dt = 1− q,

for q defined by (4.12), since

q′ + q =

∫ +∞

0

(α + β0(t)) exp

(
−
∫ t

0

β0(u)du− αt
)
dt = Pδ(0,0) (T < +∞) = 1.

Moreover, from (4.43) we have that for all t ≥ 0

π(t, 1) = (γπ0 + (1− γ)π1)2
∫ +∞

0

β1(t+ u) exp

(
−
∫ u

0

β1(t+ w)dw

)
du

= (γπ0 + (1− γ)π1)2
(
1− exp

(
−
∫ +∞

0

β1(t+ u)du

))
.

Hence using the integrabilty condition Assumptions 4.2.1 (A1), we obtain for all t ≥ 0

π(t, 1) = (γπ0 + (1− γ)π1)2 = π1,
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which gives immediately (4.15). Finally, after injecting these results back in (4.44) we
get the system (4.13a)-(4.13b):{

π0 = (1− q)p+ (1− q)(1− p)π2
0 + qπ1

π1 = (γπ0 + (1− γ)π1)2.

Analogously, injecting these results back in (4.43) with i = 0 we get (4.14) for all a ≥ 0.
Next, we prove that (π0, π1) is the minimal solution of this system. Set (Tn)n∈N the

jump times of Z, with T0 = 0, so in our previous notation T1 = T . Define the extinction
probabilities at the n-th jump by

π(n)(a, i) = Pδ(a,i) (NTn = 0) .

Therefore

lim
n→+∞

π(n)(a, i) = Pδ(a,i)

(⋃
n∈N

{NTn = 0}

)
= Pδ(a,i) (∃t > 0 : Nt = 0) = π(a, i).

Now, suppose that we have some positive real solution π̃ of (4.13a)-(4.13b). Then for
both i ∈ {0, 1}, π̃i ≥ π(0)(0, i) = 0. We now show inductively that the same is verified for
each n ∈ N∗ and in the limit n → +∞. As before, we condition with respect to the first
jump and use the strong Markov property to obtain the following recursive equation

π(n)(a, i) = Pδ(a,i) (ZT = 0) + Eδ(a,i)

[
Pδ(a+T,1)

(
NTn−1 = 0

)
1ZT=δa+T,1

]
+ Eδ(a,i)

[
Pδ(0,I1)+δ(0,I2)

(
NTn−1 = 0

)
1ZT=δ(0,I1)+δ(0,I2)

]
= π(1)(a, i) + Eδ(a,i)

[
π(n−1)(a+ T, 1)1ZT=δa+T,1

]
+ Eδ(a,i)

[
π(n−1)(0, I1)π

(n−1)(0, I2)1ZT=δ(0,I1)+δ(0,I2)

]
, n ∈ N∗

where we have again

π(1)(a, i) = 1i=0 p

∫ +∞

0

β0(a+ t) exp

(
−
∫ t

0

β0(a+ u)du− αt
)
dt.

Suppose that π(n−1) ≤ π̃. Then

π(n)(a, i) ≤ π(1)(a, i) + Eδ(a,i)

[
π̃(T, 1)1ZT=δT,1

]
+ Eδ(a,i)

[
π̃(0, I1)π̃(0, I2)1ZT=δ(0,I1)+δ(0,I2)

]
= π̃(a, i),

since π̃ is a solution of (4.43). Therefore, by induction, for all n ∈ N, π(n) ≤ π̃. Moreover,
since

{
π(n)(a, i)

}
n∈N is a sequence of probabilities of monotonic increasing events, we pass

to the limit and conclude that π ≤ π̃. Finally, notice that π0 = π1 = 1 is always an admissible
solution, therefore the extinction probability are well contained in [0, 1].
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4.9.2 Proof of Theorem 4.3.5
Proof. First, note that (4.13a) and (4.13b) define two parabolic curves in the plane (π0, π1)
which intersect at least at the point (1, 1), since π0 = π1 = 1 is always solution of the
system. The proof consists in showing that other intersection occurs in the unit square
[0, 1[×[0, 1[ if and only if Condition (4.16) is verified. As in the classical characterisation
of the extinction probability in Galton-Watson branching processes, this property can be
obtained as a consequence of the value of the derivatives of the curves at the intersection
point (1, 1).

Note that the parametric curve defined by (4.13a) is a concave parabola whose intercept
is located at π1 = −p1−q

q
< 0 and whose derivative is given by

dπ1
dπ0

(π0) =
1− 2(1− p)(1− q)π0

q
.

In particular, the derivative in (1, 1) equals
dπ1
dπ0

(1) =
1− 2(1− p)(1− q)

q
.

Note that the curve defined by (4.13a) admits two solutions at π0 = 1. However, using the
implicit function theorem around (1, 1), we obtain a locally well defined function such that,
by the implicit differentiation of (4.13b), it has derivative

dπ1
dπ0

(π0) = 2 (γπ0 + (1− γ)π1(π0))
(
γ + (1− γ)dπ1

dπ0
(π0)

)
,

and therefore at (1, 1) we have
dπ1
dπ0

(1) =
2γ

2γ − 1
.

We can show that there is a second solution π̄1 of (4.13b) at π0 = 1 comprised strictly
between 0 and 1 if and only if 0 < γ < 1/2. Moreover, (4.13b) also admits (0, 0) as solution.
Thus, the trace of the curve described by (4.13b) connects (0, 0) to (1, 1) if γ ≥ 1/2, or
to (1, π̄1), if γ < 1/2. Meanwhile, the curve of (4.13a) connects the negative ordinate
(0,−p1−q

q
) with (1, 1). Therefore, no intersection other than (1, 1) can occur inside the unit

square if and only if γ ≥ 1/2, and (4.13a) arrives at (1, 1) with non-negative derivative and
whose value is at least as much as the value of the derivative of (4.13b). Otherwise, by
the continuity and strict monotonicity of the curves we would have some other intersection
point below (1, 1) (see Fig. 4.3). This is then:

γ ≥ 1/2 , 1− 2(1− p)(1− q) ≥ 0 and
1− 2(1− p)(1− q)

q
≥ 2γ

2γ − 1
,

which gives finally, for p ̸= 1/2

γ ≥ 1

2

(
1 +

q

(2p− 1)(1− q)

)
.

In particular, the condition cannot be verified if p < 1/2. In the case p = 1/2, the previous
conditions cannot be verified either. Thus finally, extinction occurs almost surely if and only
if p > 1/2 and condition (4.16) is verified, which gives the result.
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4.10 Proofs of Section 4.4

4.10.1 Proof of Proposition 4.4.2
Proof. Let (a, i) ∈ R+ × {0, 1}, f ∈ Bb(R+ × {0, 1}). Conditioning on the first jump event,
we develop Mtf(a, i) using Lemma 4.2.3 to compute the expectations at each jump case,
and the strong Markov property, similarly as we did in the Proof of Proposition 3.5. We
obtain the following Duhamel’s representation:

Mtf(a, i) =f(a+ t, i)ψi(a, a+ t)

+ (1− i)α
∫ t

0

Mt−sf(a+ s, 1)ψi(a, a+ s)ds

+ 2

∫ t

0

βi(a+ s)ψi(a, a+ s)
{
(i− 1)(1− p)Mt−sf(0, 0)

i (γMt−sf(0, 0) + (1− γ)Mt−sf(0, 1))
}
ds,

(4.46)

where the first term of the RHS corresponds to the deterministic evolution when there are
no events before time t, the second term corresponds to the case when the first jump is a
type switch, and the third one to the case when the first jump is a division.

We iterate Duhamel’s formula once more for the second line of the RHS, using (4.46)
with i = 1 and a = a + s, and then re-injecting the obtained result. We obtain therefore
a representation that uses only the semigroup valuated at initial age 0. Rearranging the
terms for i = 0 and i = 1 in a vector, we obtain (4.21).

4.10.2 Proof of Lemma 4.4.6
Proof. We start by the direct integration of (4.23) to obtain K∞. The integration of the
composition ψ0 ⋆ ψ1 requires some attention. First, we can easily remark that for all s < a,
ψ1(s, a) = ψ1(0, a)/ψ1(0, s), and then using Fubini’s theorem we obtain that∫ +∞

0

αβ1(a)ψ0 ⋆ ψ1(0, a)da =

∫ +∞

0

αβ1(a)

∫ a

0

ψ0(0, s)ψ1(s, a)dsda

=

∫ +∞

0

α
ψ0(0, s)

ψ1(0, s)

(∫ +∞

s

β1(a)ψ1(0, a)da

)
ds.

But, by definition of the survival function, we know that ψ1(0, s) =
∫ +∞
s

β1(a)ψ1(0, a)da.
Thus, using the definition of q introduced by (4.12) we have that∫ +∞

0

αβ1(a)ψ0 ⋆ ψ1(0, a)da =

∫ +∞

0

αψ0(0, s)ds = q.

Thus, we obtain finally

K∞ = 2

[
(1− p)(1− q) + γq (1− γ)q

γ 1− γ

]
,
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which is a 2×2 matrix of non-negative terms. In particular, it has non-negative discriminant
and non-negative eigenvalues which are given by

1

2

(
tr(K∞)±

√
tr(K∞)2 − 4 det(K∞)

)
.

with

tr(K∞) = 2 (1 + (1− p− γ)(1− q)) ;
det(K∞) = 4(1− p)(1− q)(1− γ).

In particular, the largest eigenvalue is larger than 1 if and only if√
tr(K∞)2 − 4 det(K∞) > 2− tr(K∞) = (γ − (1− p))(1− q). (4.47)

1. Case γ ≤ 1 − p : Since the RHS of (4.47) is non-positive, (4.47) is trivially verified
and we have immediately ρ(K∞) > 1

2. Case γ > 1− p : Since the RHS of (4.47) is positive, by taking squares we have that
(4.47) is equivalent to the following inequalities:

tr(K∞)2 − 4 det(K∞) > 4 + tr(K∞)2 − 4tr(K∞)

⇐⇒ tr(K∞)− det(K∞)− 1 > 0

⇐⇒ 2 + 2(1− p− γ)(1− q)− 4(1− p)(1− q)(1− γ)− 1 > 0

⇐⇒ 2(1− q)((1− γ)(1− 2(1− p))− p) + 1 > 0.

Then, isolating the value of γ we obtain

(2p− 1)γ <
(2p− 1)(1− q) + q

2(1− q)
. (4.48)

We study the case p > 1/2 and p ≤ 1/2 separately. If p > 1/2, the factor 2p − 1 is
positive, and then dividing (4.48) by 2p− 1 we obtain directly condition (4.16):

γ <
1

2

(
1 +

q

(2p− 1)(1− q)

)
.

If p = 1/2, then (4.48) is trivially verified. Finally, if p < 1/2, the factor 2p − 1 is
negative and dividing (4.48) by 2p− 1 we obtain

γ >
1

2

(
1 +

q

(2p− 1)(1− q)

)
.

However, since we are under the assumption γ > 1− p and p < 1/2, we have γ > 1/2
and the inequality above is verified a fortiori.

Summarising,

ρ(K∞) > 1 ⇐⇒ {γ ≤ 1− p} ∪ ({γ > 1− p} ∩ {p > 1/2} ∩ {(4.16) is true})
∪ ({γ > 1− p} ∩ {p ≤ 1/2})

⇐⇒ {p ≤ 1/2} ∪ ({p > 1/2} ∩ {(4.16) is true}) ,
which is exactly the condition assuring survival with positive probability in Theorem 4.3.5.
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4.10.3 Proof of Lemma 4.4.7
Proof. Notice that for all λ ∈ R the matrix F(λ) is a 2 × 2 matrix with all strictly positive
entries. In particular, this assures irreducibility and by Perron-Frobenius Theorem we have
the existence, for all fixed λ ∈ R, of a unique triplet of eigenelements (µ(λ),n(λ),h(λ)) such
that 

F(λ)h(λ) = µ(λ)h(λ)

n(λ)⊤F(λ) = µ(λ)n(λ)⊤

n(λ)⊤h(λ) = 1

n(λ)⊤(1, 1) = 1.

We start by the sufficiency direction of the equivalence. To show that there is a unique
λ > 0 such that ρ(F(λ)) = 1 we will use a classical monotonicity argument. First, we notice
that F(0) = K∞, which under the survival conditions and thanks to Lemma 4.4.6 has
spectral radius ρ(F(0)) = µ(0) > 1. Second, notice that as λ→ +∞, e−λsK(0, s) decreases
coordinate by coordinate to the null matrix. Thus, we have by monotone convergence that
F(+∞) = 02×2 and therefore limλ→+∞ µ(λ) = 0. It remains to show that λ 7→ µ(λ) is a
decreasing continuous function. This is a classical property that comes from Lemma 4.12.2.
The monotonicity is given by the assertion (i) of the Lemma, whilst the continuity comes
from the estimation (ii) and the continuity of λ 7→ e−λs. Finally, this implies that there
exists a unique λ∗ > 0 such that µ(λ∗) = 1.

The necessity direction of the equivalence follows easily from the previous remarks.
Since λ 7→ µ(λ) is a continuous decreasing function, if λ∗ ∈ R such that µ(λ∗) = 1 is strictly
positive, then ρ(F(0)) = µ(0) > 1. Finally, by Lemma 4.4.6, this is equivalent to verify the
survival condition (4.16).

4.10.4 Proof of Proposition 4.4.5
Proof. The proof follows classical arguments, presented for example in Section 4.3 of [143].
The first part of the proof consists on showing the existence of a spectral gap, this is, of a
positive constant ω such that for the value of λ defined by (4.32) we have

max

{
−b, sup

z∈σ(Q)\σess(Q)\{λ}
Re(z)

}
< ω < λ.

To do so, we show in Section 4.10.5 further below that the growth bound ω1(Mt) asso-
ciated with the measure of non-compactness of the semigroup Mt (see Definition 4.10.2)
is bounded by −b. Then, by Theorem 4.6 of [143] we have that the essential spectrum
of Q must be contained within {z ∈ C : Re(z) ≤ −b}. Therefore, for any λ ∈ C such that
Re(λ) > −b which is a root of the characteristic equation (4.32), we have that λ is an
eigenvalue of Q. This is, there exists a non-zero h ∈ (L1(R+))

2 such that Qh = λh.
Indeed, suppose that the pair (λ,h) is solution to Qh = λh, then h′ ∈ (L1(R+))

2 and is
given almost everywhere by

h′(a) = (λI+D(a))h(a)− 2B(a)h(0).
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Then, we notice that

∂a
(
e−λaΨ(0, a)h(a)

)
= ∂a

(
e−λaΨ(0, a)

)
h(a) + e−λaΨ(0, a)h′(a)

= −e−λaΨ(0, a)(λI+D(a))h(a) + e−λaΨ(0, a)(λI+D(a))h(a)

− 2e−λaΨ(0, a)B(a)h(0)

= −2e−λaK(0, a)h(0). (4.49)

Therefore, since h ∈ (L1(R+))
2 and lima→+∞ Ψ(0, a) = 0, we have

h(0) = −
∫ +∞

0

∂a
(
e−λaΨ(0, a)h(a)

)
da = 2

∫ +∞

0

e−λaK(0, a)h(0) da = F(λ)h(0).

This linear equation has a non-trivial solution h(0) if and only if det (F(λ)− I) = 0. Con-
versely if λ is the largest root of det (F(λ)− I) = 0 and is simple and associated with some
eigenvector h(0) ∈ R2

+, we have that

h(a) := eλaΨ−1(0, a)

(
I− 2

∫ a

0

e−λsΨ(0, s)B(s) ds

)
h(0) (4.50)

= 2eλa
∫ +∞

a

e−λsΨ(a, s)B(s) dsh(0) (4.51)

is a (L1(R+))
2 solution to Qh = λh (both representations will be useful in the sequel).

Finally, Lemma 4.4.7 allows us to conclude for the simplicity of the eigenvalue λ.
Then, thanks to Proposition 4.65 of [143], we can identify ker (λI−Q) to the image of

the projection operator P : (L1(R+))
2 → (L1(R+))

2 given by the resolvent

Pf(a) :=
1

2πi

∮
Cλ

(zI−Q)−1 f(a) dz,

where Cλ is a closed counterclockwise oriented curve of the complex plane enclosing λ but
no other point of the spectrum of Q.

Then, since λ is a simple root of (4.32), we have a unique pair (λ,h) (up to normalisation
of h) such that Qh = λh, and so P is of rank 1. Therefore, for all f we can write Pf(a) =
ν̄(f)h(a), where ν̄(f) is a normalisation constant depending on f .

Moreover, by the linearity of P, we have that ν : (Cc(R+))
2 → R2

+ given for all f of the
form f = (f(·, 0), f(·, 1)) by

ν(f) = (ν̄(f(·, 0), 0), ν̄(0, f(·, 1)))
is a linear application. Therefore, Riesz–Markov–Kakutani representation Theorem allows
us to write ν̄(f) =

∫ +∞
0

f(a)⊤ν(da) where ν ∈ (M(R+))
2 is a (vector) positive Radon

measure. Furthermore, by duality we can conclude that this measure ν is the limiting
distribution of the population ages in the sense that for all initial distribution µ and all
f ∈ (L1(R+))

2 we have

e−λt ⟨µMt, f⟩ =
∫ +∞

0

f(a) e−λtµMt(da) =

∫ +∞

0

e−λtMtf(a) µ(da)

−→
t→+∞

(∫ +∞

0

h(a)µ(da)

)(∫ +∞

0

f(a)ν(da)

)

147



CHAPTER 4. TRADE-OFFS IN A BI-TYPE AGE-STRUCTURED
MODEL

Finally, by Proposition 4.15 of [143] we have

||Mtf −Pf ||1 ≤ ceωt||f −Pf ||1

from where we conclude the exponential rate of convergence.

4.10.5 Compactness estimates

We start our analysis by studying some estimates about the boundness and compactness of
Mt. To that purpose, we write the decomposition

Mtf(a) = Utf(a) +Wtf(a),

where Ut is destinated to be small and Wt is destinated to be compact, in the senses that
will be detailed further below (see for example Section 3.4 of [143] for a detailed motivation
of this decomposition). In our case, the natural decomposition is given by Lemma 4.10.1.

Lemma 4.10.1. Consider the semigroup Mt on (L1(R+))
2 introduced by Def. 4.4.1. Then,

for all f ∈ (L1(R+))
2 we can write Mtf(a) = Utf(a) +Wtf(a) where

Utf(a) := Ψ(a, a+ t)f(a+ t) (4.52a)

Wtf(a) := 2

∫ t

0

K(a, a+ t− s)(I− S1)
−1S2f(s)ds, (4.52b)

where S1 : (L1(R+))
2 → (L1(R+))

2 is a locally compact linear operator of spectral radius
0, and S2 : (L

1(R+))
2 → (L1(R+))

2 is a bounded linear operator, both defined by

S1f(t) := 2

∫ t

0

K(0, t− s)f(s)ds

S2f(t) := Ψ(0, t)f(t).

Moreover, for all fixed t > 0, Wt : (L
1([0, t]))2 → (L1([0, t]))2 is a compact operator.

Proof. Fix t > 0 and let f ∈ (L1([0, t]))2. When needed, we extend f to (L1(R))2 as f(s) =
(0, 0) whenever s > t or s < 0. The Duhamel representation obtained in (4.21), along with
(4.24) give that for all a ≥ 0,

Mtf(a) = Ψ(a, a+ t)f(a+ t) + 2

∫ t

0

K(a, a+ t− s)g(s)ds,

where g solves the fixed point problem

g(s) = Ψ(0, s)f(s) + 2

∫ s

0

K(0, s− u)g(u)du

= S2f(s) + S1g(s)
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Therefore, if (I− S1)
−1 is well defined, we have that g can be obtained as

g = (I− S1)
−1S2f ,

from where we get (4.52b).
Hence, we start proving that S1 : (L1([0, t]))2 → (L1([0, t]))2 is a compact linear operator,

to then conclude thanks to the Fredholm alternative.

1. Compactness of S1. Since we are restricted to the compact interval [0, t] we only need
to check the equicontinuity assumption of the Riesz-Fréchet-Kolmogorov Theorem.
Consider some bounded sequence {fn}n on the unit ball of (L1([0, t]))2. For all f ∈
(L1([0, t]))2 we have∫ t

0

||S1f(s+ a)− S1f(s)||1ds = 2

∫ t

0

||
∫ s+a

0

K(0, s+ a− u)f(u)du−
∫ s

0

K(0, s− u)f(u)du||1ds

≤ 2

∫ t

0

∫ s

0

||K(0, s− u+ a)−K(0, s− u)||1||f(u)||1duds

+ 2

∫ t

0

∫ a+s

s

||K(0, s− u+ a)||1||f(u)||1duds

≤ 2

∫ t

0

∫ s

0

||K(0, s− u+ a)−K(0, s− u)||1||f(u)||1duds

+ 2

∫ a

0

(∫ u

0

||K(0, s− u+ a)||1ds
)
||f(u)||1du

+ 2

∫ t

a

(∫ u

u−a

||K(0, s− u+ a)||1ds
)
||f(u)||1du

≤ 2

∫ t

0

∫ s

0

||K(0, s− u+ a)−K(0, s− u)||1||f(u)||1duds

+ 2|a| sup
0<s<t

||K(0, s)||1||f ||1

The second term of the RHS can be controlled uniformly as |a| → 0. We focus in
the first term. By construction, as shown in (4.9), the jump times are absolutely
continuous random variables. Therefore s 7→ K(0, s), which contains the probability
densities of the different jump events at time s, is a continuous application from R+

to the vector space of positive 2× 2 matrices. In particular, it is uniformly continuous
over the compact [0, t], this is, for all ε > 0, there exists δ > 0 such that

||K(0, s− a)−K(0, s)||1 < ε for all s ∈ [0, t[ whenever a < δ

Therefore, for all a < δ we have∫ t

0

||S1f(s− a)− S1f(s)||1ds ≤ 2εt+ 2|a| sup
0<s<t

||K(0, s)||1 =: ε̃,

uniformly with respect to f . Therefore {S1fn} is relatively compact.
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2. Fredholm alternative. Since S1 : (L1([0, t]))2 → (L1([0, t]))2 is compact, any λ ̸= 0 is
either an eigenvalue of S1 or otherwise lies in the domain of the resolvent. Let’s sup-
pose by absurd that λ ̸= 0 is an eigenvalue associated to some nonzero eigenfunction
u ∈ (L1([0, t]))2 such that S1u = λu, this is, for all a ∈ [0, t],

u(a) =
2

λ

∫ a

0

K(0, a− s)u(s)ds,

and thereby,

||u(a)||1 ≤
2

λ
sup
0<s<t

||K(0, s)||1
∫ a

0

||u(s)||1ds.

Thus, by Grönwall’s inequality ||u(a)||1 = 0 for all a ∈ [0, t], and therefore u ≡
0, which is a contradiction. Therefore the spectrum of S1 consists only on {0}. In
particular the constant λ = 1 is in the domain of the resolvent and (I− S1)

−1 is then
well defined bounded linear operator.

We prove that S2 : (L1([0, t]))2 → (L1([0, t]))2 is bounded and then, rejoining all the
previous results, we obtain the compactness of Wt : (L

1([0, t]))2 → (L1([0, t]))2 which allow
us to conclude the Lemma.

3. Boundness of S2. For all f ∈ (L1([0, t]))2 we have∫ t

0

||S2f(s)||1ds ≤
∫ t

0

||Ψ(0, s)||1||f(s)||1ds ≤ ||f ||1,

since t 7→ Ψ(0, t) is decreasing in each coordinate and therefore supt>0||Ψ(0, t)||1 =
||Ψ(0, 0)||1 = 1.

4. Compactness of Wt. As we did for S1, for all f ∈ (L1([0, t]))2 we have∫ t

0

(Wtf(a+ s)−Wtf(a)) da = 2

∫ t

0

∫ t

0

(K(a+ s, a+ s+ t− u)−K(a, a+ t− u))

(I− S1)
−1S2f(u) du da,

and therefore

||Wtf(·+ s)−Wtf(·)||1 ≤ 2

∫ t

0

(∫ t

0

||K(a+ s, a+ s+ t− u)−K(a, a+ t− u)||1da
)

||(I− S1)
−1S2f(u)||1du

By our previous calculations, we can bound ||(I − S1)
−1S2f(u)||1 uniformly for u ∈

[0, t] by some constant M > 0 times ||f ||1. By the absolutely continuity of the jump
time densities, (a, s) 7→ K(a, s) is a continuous application in both coordinates, and
therefore uniformly continuous on [0, t]. Thus, for all ε > 0 there exists a δ > 0 such
that whenever |s| < δ, then

||Wtf(·+ s)−Wtf(·)||1 ≤ 2Mt2ε,

uniformly for all f ∈ (L1([0, t]))2 with ||f ||1 ≤ 1. Therefore Wt maps bounded set to
relatively compact sets and we conclude the proof.
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We recall now some useful definitions:

Definition 4.10.2 (Measure of non-compactness and growth bounds). We define the Kura-
towski’s measure of non-compactness of a bounded set A of a Banach space X as

α(A) := inf {ε > 0 : A can be covered by a finite number of subsets of X of diameter ≤ ε} ,

and the associated measure of non-compactness of a bounded operator S in X as

α(S) := inf {ε > 0 : α(S(A)) ≤ εα(A) for all bounded sets A ⊂ X} .

Finally we define the α-growth bound of the semigroup Mt as

ω1(Mt) := lim
t→+∞

1

t
log (α (Mt)) .

Now, thanks to the decomposition proven in Lemma 4.10.1, we obtain the following
estimate on the non-compactness of Mt:

Proposition 4.10.3. Under Assumptions 4.2.1 we have that ω1(Mt) ≤ −b̄ < 0.

Proof. From Proposition 4.12.1 applied to the decomposition proven on Lemma 4.10.1,
since Wt is compact we have that

α(Mt) ≤ α(Ut) ≤ ||Ut||.

Now, for all fixed t ≥ 0, and for all a ≥ 0, we have term by term

Ψ(a, a+ t) ≤
[
e−(α+b)t e−bt(1− e−αt)

0 e−bt

]
,

so ||Ψ(a, a+ t)||1 ≤ e−bt (2− e−αt). Therefore, for all f ∈ (L1(R+))
2 we have,

||Utf ||1 =
∫ +∞

0

||Ψ(a, a+ t)f(a+ t)||1da

≤ e−bt
(
2− e−αt

)
||f ||1,

and therefore
ω1(Mt) ≤ lim

t→+∞

1

t
log
(
e−bt

(
2− e−αt

))
= −b

Then we conclude with the rest of the proof of Proposition 4.4.5 as stated in the main
text.
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4.10.6 Proof of Remark 4.4.8
Proof. Notice that taking as test function f ≡ 1 = (1, 1), we get

Mt1(a) = 1+

∫ t

0

Ms (Q1) (a)ds = 1+

∫ t

0

Ms ((2B(·)−D(·))1) (a)ds

= 1+

∫ t

0

[
Ms(β0, 0)(a)

⊤

Ms(0, β1)(a)
⊤

]
ds

(
1− 2p

1

)
ds.

Therefore for both coordinates i ∈ {0, 1} we have

Mt1(a, i) ≤ 1 + b̄

∫ t

0

Ms1(a, i)ds.

Hence, by Grönwall ’s inequality, for all a ≥ 0, Mt1(a, u) ≤ eb̄t.
Therefore, by duality, and since νMt(da) = eλtν(da),

eλt ⟨ν,1⟩ = ⟨νMt,1⟩ = ⟨ν,Mt1⟩ ≤ eb̄t ⟨ν,1⟩ .

Finally, ⟨ν,1⟩ = 1 ̸= 0 and the result follows.

4.11 Proofs of Section 4.5

4.11.1 Proof of Lemma 4.5.1
Proof. Since h is solution to the eigenproblem Qh = λh, representation (4.51) gives us

h(a) = 2

∫ +∞

0

e−λsΨ(a, a+ s)B(a+ s)h(0)ds.

We deduce the result by Dominated Convergence in each coordinate of the expression above.
Set ℓ(a, s) := 2e−λsΨ(a, a + s)B(s)h(0). Note that only matrix Ψ (defined in (4.22), and
with ψ0, ψ1, ψ0 ⋆ ψ1 in (4.2)-(4.4)) depends on a. First, we know by construction of the
Perron eigenelements that for all a ≥ 0, ℓ(a, ·) ∈ (L1(R+))

2. Indeed:

||ℓ(a, s)||∞ ≤ 2b̄||h(0)||∞e−λs ∈ L1(R+, ds).

Moreover, since we assume additionally that β0, β1 are continuous, we deduce that for all
s ≥ 0, ℓ(·, s) ∈ C1

(
R+,R2

+

)
. Indeed, for all a ≥ 0, s ≥ 0, we have explicitly

∂aψ0(a, a+ s) = (β0(a)− β0(a+ s))ψ0(a, a+ s),

∂aψ1(a, a+ s) = (β1(a)− β1(a+ s))ψ1(a, a+ s),

∂a(ψ0 ⋆ ψ1)(a, a+ s) = (α + β0(a)− β1(a+ s))ψ0 ⋆ ψ1(a, a+ s) + ψ0(a, a+ s)− ψ1(a, a+ s),

where all the terms at the RHS are well defined and continuous for all a ≥ 0. Finally, all
these terms are uniformly bounded by b̄+ α + 1, and therefore

||∂aℓ(a, s)||∞ ≤ 4b̄(b̄+ α + 1)||h(0)||∞e−λs ∈ L1(R+, ds).

Hence, by the Dominated Convergence Theorem, h ∈ C1(R+, R2
+).
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4.11.2 Proof of Lemma 4.5.2
Proof. Writing the dependencies on α and γ explicitly, we express hα,γ(a) for all a ≥ 0 as

hα,γ(a) = 2

∫ +∞

0

e−λα,γsΨα(a, a+ s)Bγ(a+ s)hα,γ(0)ds. (4.53)

Again by Dominated Convergence, it suffices to prove the continuity and domination by
an integrable function of both coordinates of

(α, γ) 7→ ℓa(α, γ) := 2e−λα,γsΨα(a, a+ s)Bγ(a+ s)hα,γ(0) ∈ R2
+.

Hence, we show first that ||hα,γ(0)||∞ is uniformly bounded in every open neighborhood of
(α, γ) ∈ R+ × (0, 1). Using the normalisation condition ⟨να,γ,hα,γ⟩ = 1 with να,γ the left
eigenmeasure, we have that for all a ≥ 0,

1 = ⟨να,γ,hα,γ⟩ = u⊤
α,γhα,γ(0),

where

uα,γ := 2

∫ +∞

0

(∫ +∞

0

e−λα,γτBγ(a+ τ)⊤Ψα(a, a+ τ)⊤dτ

)
να,γ(a) da.

Therefore, to bound each coordinate of hα,γ(0) ∈ R2
+ it suffices to bound by below both

coordinates of uα,γ. Set uα,γ = (u0α,γ, u
1
α,γ), such that

u0α,γ = 2

∫∫
R2
+

e−λα,γτνα,γ(a)
⊤
(
(1− p)β0(a+ τ)ψ0(a+ τ) + γβ1(a+ τ)αψ0 ⋆ ψ1(a, a+ τ)

γβ1(a+ τ)ψ1(a+ τ)

)
dτ da,

u1α,γ = 2

∫∫
R2
+

e−λα,γτνα,γ(a)
⊤
(
(1− γ)β1(a+ τ)αψ0 ⋆ ψ1(a, a+ τ)

(1− γ)β1(a+ τ)ψ1(a+ τ)

)
dτ da.

By Remark 4.4.8, the value of λα,γ is bounded by b̄ for all (α, γ). Then, using Assumptions
4.2.1 to bound the division rates in matrix B and the survival functions in matrix Ψ we
obtain :

u0α,γ ≥ 2γ

∫ +∞

0

(∫ A

a0

be−2b̄τ (1− e−ατ )dτ

)
να,γ(a)

⊤1 da,

u1α,γ ≥ 2(1− γ)
∫ +∞

0

(∫ A

a0

be−2b̄τ (1− e−ατ )dτ

)
να,γ(a)

⊤1 da,

for some fixed arbitrary quantity A > a0 with a0 being given by (A3) in Assumptions 4.2.1.
Then, the integral with respect to τ can be uniformly bounded by below by some positive
constant c̃α,A dependent on α and the choice of A. Finally, by the normalisation condition
⟨ν,1⟩ = 1, we obtain

u0α,γ ≥ 2γc̃α,A, u1α,γ ≥ 2(1− γ)c̃α,A,
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and therefore,

hα,γ(0, 0) ≤
1

2γc̃α,A
, hα,γ(0, 1) ≤

1

2(1− γ)c̃α,A
.

Thus, for all fixed a ≥ 0

ℓ0α,γ(a, s) ≤ 2c̃−1
α,A

(
1− p
γ

β0(a+ s)ψ0(a, a+ s) + β1(a+ s)αψ0 ⋆ ψ1(a, a+ s)

)
∈ L1(R+, ds),

ℓ1α,γ(a, s) ≤ 2c̃−1
α,Aβ1(a+ s)ψ1(a, a+ s) ∈ L1(R+, ds),

which can be bound uniformly in any neighbourhood around (α, γ), whenever α, γ /∈ {0, 1}.
Finally, we show that (α, γ) 7→ ℓa(α, γ) is continuous for the uniform norm. Fix some couple
(α, γ) ∈ R+ × (0, 1) and let (αn, γn)n∈N be some sequence converging to (α, γ) as n→ +∞.
We know already that hαn,γn(0) and λαn,γn are bounded for all n. Therefore we can extract
some convergent subsequences with adherence values

λαnk
,γnk
→ λ∞ ≥ 0, hαnk

,γnk
(0)→ η∞ ∈ R2

+.

Moreover, note that for all fixed vector x ∈ R2
+, the linear application (α, γ) 7→ Kα,γ(a, a +

s)x = Ψα(a, a + s)Bγ(a + s)x is a continuous function of (α, γ) for the uniform norm.
Therefore, we have that entry-wise

[Kαn,γn(a, a+ s)]i,j → [Kα,γ(a, a+ s)]i,j.

To conclude, we identify λ∞ and η∞ to the Perron eigenelements of the associated limit
matrix Kα,γ(a, a+ s). Indeed, let

h∞(a) := eλ∞aΨ−1
α (0, a)

(
I− 2

∫ a

0

e−λ∞sΨα(0, s)Bγ(s) ds

)
η∞.

Therefore
h∞(0) = η∞,

and differentiating h∞(a) we obtain that

h′
∞(a) = λ∞h∞(a)− 2Bγ(a)η∞ +Dα(a)h∞(a),

or equivalently
Qα,γh∞(a) = λ∞h∞(a).

By uniqueness of the solution to the eigenvalue problem associated to Qα,γ (see previous
sections) we conclude that

h∞(a) = hα,γ(a), λ∞ = λα,γ.

This allow us to conclude that for all fixed values of a, s ≥ 0 both coordinates of ℓαn,γn(a, s)
converge to ℓα,γ(a, s). Thus, by Dominated Convergence we can conclude the continuity of
(α, γ) 7→

∫ +∞
0

ℓα,γ(a, s)ds = hα,γ(a).
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4.11.3 Proof of Proposition 4.5.3
Proof. First, since hα,γ is normalised by ⟨να,γ,hα,γ⟩ = 1, we can write

λα,γ = ⟨να,γ,Qα,γhα,γ⟩ = ⟨να,γQα,γ,hα,γ⟩ .

Then, for all δ ∈ R we have

⟨να,γ, (Qα+δ,γ −Qα,γ)hα+δ,γ⟩ = ⟨να,γ, λα+δhα+δ,γ⟩ − ⟨λα,γνα,γ,hα+δ,γ⟩
= ⟨να,γ,hα+δ,γ⟩ (λα+δ,γ − λα,γ)

and therefore

λα+δ,γ − λα,γ =
⟨να,γ, (Qα+δ,γ −Qα,γ)hα+δ,γ⟩

⟨να,γ,hα+δ,γ⟩

=
1

⟨να,γ,hα+δ,γ⟩

∫ +∞

0

να,γ(da)
⊤
[
−δ δ
0 0

]
hα+δ,γ(a)

=
δ

⟨να,γ,hα+δ,γ⟩

∫ +∞

0

(hα+δ,γ(a, 1)− hα+δ,γ(a, 0)) να,γ(da, 0).

Thanks to Lemma 4.5.1, and once more by Dominated Convergence, we have that ⟨να,γ,hα+δ,γ⟩ →
⟨να,γ,hα+δ,γ⟩ and ⟨να,γ(·, 0), hα+δ,γ(·, 1)− hα+δ,γ(·, 0)⟩ → ⟨να,γ(·, 0), hα,γ(·, 1)− hα,γ(·, 0)⟩ as
δ → 0. Then, dividing by δ and making δ → 0, t we obtain (4.33). Analogously for any
δ ∈ R small enough we have

λα,γ+δ − λα,γ =
⟨να,γ, (Qα,γ+δ −Qα,γ)hα,γ+δ⟩

⟨να,γ,hα,γ+δ⟩

=
1

⟨να,γ,hα,γ+δ⟩

∫ +∞

0

να,γ(da)
⊤2

[
0 0

δβ1(a) −δβ1(a)

]
hα,γ+δ(0)

=
δ

⟨να,γ,hα,γ+δ⟩
(hα,γ+δ(0, 0)− hα,γ+δ(0, 1))

∫ +∞

0

β1(a)να(da, 1),

from where (4.34) is obtained by the same arguments.

4.11.4 Proof of Proposition 4.5.4
Proof. From the proof of Theorem 4.4.5, if (α, γ) is in the survival region, then

det (I− F(λα,γ)) = 0,

and hα,γ(0) is the unique non-trivial solution to the linear problem

(I− F(λα,γ))hα,γ(0) = 0.

From the expression of F(λ) and the first equation, we have that for λ = λα,γ

det

[
2(1− p)ξ0(α + λ) + 2γξ01(λ)− 1 2(1− γ)ξ01(λ)

2γξ1(λ) 2(1− γ)ξ1(λ)− 1

]
= 0,
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where ξ0(λ) =
∫ +∞
0

e−λaβ0(a) exp(−
∫ a

0
β(s)ds)da, ξ1(λ) =

∫ +∞
0

e−λaβ1(a)ψ1(0, a)da are
the Laplace transforms associated to the division times of types 0 and 1, and ξ01(λ) =∫ +∞
0

e−λaψ0 ⋆ ψ1(0, a)da. This implies the following implicit relation characterising λα,γ:

ξ01 (λα,γ) =
(1− 2(1− p)ξ0(α + λα,γ))(1− 2(1− γ)ξ1(λα,γ))

2γ
,

which allows to simplify the matrix F(λα,γ) in order to obtain that

hα,γ(0) ∈ span
{(

1− 2ξ1(λα,γ) + 2γξ1(λα,γ)
2γξ1(λα,γ)

)}
.

Since hα,γ(0) is a non-negative vector, we have finally that

sign (hα,γ(0, 0)− hα,γ(0, 1)) = sign (1− 2ξ1(λα,γ)) .

Notice that λ 7→ ξ1(λ) is a continuous decreasing function, such that ξ1(0) = 1 and ξ1 → 0 as
λ → +∞. Moreover, the Malthusian parameter associated to ξ1, λ∗1, is the unique solution
to ξ1(λ

∗
1) = 1/2 (this is classical, see for example [143]. Therefore, if λα,γ > λ∗1, then

ξ1(λα,γ) < 1/2 and by (4.34), ∂γλα,γ > 0. Analogously, if λα,γ < λ∗1, then ∂γλα,γ < 0.

4.11.5 Proof of Proposition 4.5.6

Proof. We study the sign of ∂γλα,γ in the case where p is big or small enough, and then
relate this two partial analysis by continuity. Assumption 4.2.4 plays a key role.

(i) Case p > 1/2. From Proposition 4.8.2 and the equivalence established in Lemmas
4.4.6 and 4.4.7, if p > 1/2 we have that

sign
(
1

2

(
1 +

(2p− 1)q

1− q

)
− γ
)

= sign (ρ(Kα,γ
∞ )− 1) = sign(λα,γ).

In particular, for all α ≥ 0 it exists

γ̄α :=
1

2

(
1 +

(2p− 1)q

1− q

)
such that λα,γ̄α = 0. Recall from Corollary 4.5.5 and Fig. 4.5 that λα,0 ≥ λ∗1 > 0.
Therefore, by the continuity of γ 7→ λα,γ, for some γ̂ > 0 we must have λα,γ̂ < λ∗1, and
by Proposition 4.5.4, ∂γλα,γ|γ=γ̂ < 0. This implies that for all γ ≥ γ̂, ∂γλα,γ < 0. and
∂γλα,γ = 0 for all γ < γ̂. Thus, whenever p > 1/2, we have for all α, γ, ∂γλα,γ ≤ 0.
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(ii) Small p case. Now we prove that for all α, if p is small enough, then we have the
opposite, namely: for all γ ≥ 0, ∂γλα,γ ≥ 0. Consider the limit case p = 0 at γ = 1.
The characteristic equation for λα,γ=1 becomes

ξ0(α + λ) + ξ01(λ) =
1

2
.

Recall that Tdiv is the division time of a non-switching cell. By Jensen’s inequality,

ξ0(α + λ) = Eδ(0,0) [exp(−(λ+ α)Tdiv)]

≥ exp
(
−(λ+ α)Eδ(0,0) [Tdiv]

)
= ξ0(λ)ξ0(α).

In particular, for λ = λ∗1, and since ξ0(λ) > ξ1(λ) by Remark 4.2.5,

ξ0(α + λ∗1) ≥ ξ0(α)ξ0(λ
∗
1) > ξ0(α)ξ1(λ

∗
1) =

1− q
2

.

On the other hand, letting τ ∼ Exp(α) independent from Tdiv be the switching time of
type 0, and recalling the definition of ψ0 ⋆ ψ1 from (4.4), by Fubini’s theorem we can
write

ξ01(λ) :=

∫ +∞

0

e−λaαβ1(a)ψ0 ⋆ ψ1(0, a) da

=

∫ +∞

0

(
1

ψ1(0, τ)

∫ +∞

τ

e−λaβ1(a)ψ1(0, a) da

)
αψ0(0, τ) dτ

= q Eδ(0,0)

[
Eδ(0,1)

[
e−λTdiv

∣∣Tdiv ≥ τ
]∣∣∣ τ < Tdiv

]
.

By Assumption 4.2.4, consider a monotone coupling (T̂ 0
div, T̂

1
div) on a common proba-

bility space such that for all i ∈ {0, 1}, T̂ i
div has the same distribution under P as Tdiv

under Pδ(0,i), and P(T̂ 1
div > T̂ 0

div) = 1. In particular {τ ≤ T̂ 0
div} ⊆ {τ ≤ T̂ 1

div}. Therefore

ξ01(λ) = q E
[
E
[
e−λT̂ 1

div

∣∣∣ T̂ 1
div ≥ τ

]∣∣∣ τ < T̂ 0
div

]
.

= q E
[
E
[
e−λT̂ 1

div

]∣∣∣ τ < T̂ 0
div

]
= q ξ1(λ).

In particular, at λ = λ∗1, ξ01(λ∗1) = q/2. Finally,

ξ0(α + λ∗1) + ξ01(λ
∗
1) >

1

2

and hence λα,γ=1 > λ∗1. Then, analogously to Corollary 4.5.5, we have that ∂−γ λα,γ
∣∣
γ=1

>

0, where ∂−γ is the left derivative with respect to γ (whose values are restricted to
[0, 1]), and by Proposition 4.5.4, for all γ ≥ 0, ∂γλα,γ ≥ 0.
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(iii) Conclusion. The continuity of p 7→ ∂γλα,γ can be exhibited following the same ar-
guments presented in the proof of Lemma 4.5.2. Moreover, as we did in Proposition
4.5.4 we can further show that p 7→ ∂γλα,γ is continuously differentiable and that for
all α, γ, p ∈ (0, 1),

∂pλα,γ = ⟨ν, (∂pQ)h⟩ = −2h(0, 0)
∫
β0(a)ν(a, 0)da < 0.

Hence, for all α, γ, p 7→ ∂γλα,γ is continuous and strictly decreasing. Therefore, for
all α ≥ 0, there is a unique p̄α,γ such that λα,γ = λ∗1 and ∂γλα,γ = 0 for all γ ∈ (0, 1). In
particular, this p̄α,γ is then constant in γ, and uniquely determined by α, which gives
the result. The conclusion is presented in Figure 4.6.

4.11.6 Links between γ 7→ λα,γ and the establishment probability
conditions

Fix γ∗ ∈ (0, 1). We will introduce an auxiliary process Z̃t that will allow to rederive Propo-
sition 4.5.6 using the microscopic establishment conditions. Let Z̃t be the measure-valued
process characterised under Pα,γ

µ by an initial condition Z̃0 = µ and by the infinitesimal
generator Q̃α,γ defined as

Q̃α,γf(a) := f ′(a) + 2Bγ(a)f(0)− (Dα(a) + λα,γ∗I)f(a).

The only difference with respect toQα,γ defined in (4.19) is an additional death rate of value
λα,γ∗ for both types. Consider the associated survival functions

ψ̃i(s, t) := ψi(s, t)e
−λα,γ∗ (t−s).

Then, following the proof of Theorem 4.3.2 we have that the extinction probabilities

π̃α,γ
i := Pα,γ

δ(0,i)

(
∃t ≥ 0 : Z̃t = 0

)
are the minimal solutions in [0, 1]2 to the quadratic system{

π̃α,γ
0 = ω0 + (1− q̃ − ω0)p+ (1− q̃ − ω0)(1− p)(π̃α,γ

0 )2 + q̃π̃α,γ
1 ,

π̃α,γ
1 = ω1 + (1− ω1) (γπ̃

α,γ
0 + (1− γ)π̃α,γ

1 )2 ,

(4.54a)

(4.54b)

where

ωi := Pα,γ
δ(0,i)

(Die by death rate) = λα,γ∗

∫ +∞

0

ψ̃i(0, s)ds, (4.55)

q̃ := Pα,γ
δ(0,0)

(Switch before dividing) = α

∫ +∞

0

ψ̃0(0, s)ds. (4.56)
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We can further reduce (4.54a) to

π̃α,γ
0 = (1− q̃)p̃+ (1− q̃)(1− p̃)(π̃α,γ

0 )2 + q̃π̃α,γ
1 , (4.57)

where
p̃ := p+ (1− p) ω0

1− q
is the effective death probability at division of type 0 induced by the additional death rate
λα,γ∗. Note that since 0 ≤ ω0 + q ≤ 1 we have indeed 0 ≤ p̃ ≤ 1. This way, (4.57) has
the same form as (4.13a) studied previously. Then, following the proof of Theorem 4.3.5,
system (4.54a)-(4.54b) admits a minimal solution different than (1, 1) if and only if{

p̃ ≤ 1

2

}
or
{
p̃ >

1

2
and ω1 ≤

1

2
and γ <

(1− 2ω1)(q̃ + (1− q̃)(2p̃− 1)

2(ω1q̃ + (1 + ω1)(1− q̃)(2p̃− 1))

}
. (4.58)

We can recover the previous case (condition (4.16)) by making ω1 = 0.

We exhibit a monotonicity result analogous to Proposition 4.5.8, but for the system
(4.54a)-(4.54b) that has an additional extinction probability ω1, absent in the previously
studied system (4.13a)-(4.13b).

Lemma 4.11.1. For any solution of (4.54a)-(4.54b), for any i ∈ {0, 1}:

• If ω1 = p̃, then for all γ ∈ (0, 1), ∂γπ̃
α,γ
i = 0.

• If ω1 > p̃, then for all γ ∈ (0, 1), ∂γπ̃
α,γ
i ≤ 0.

• If ω1 < p̃, then for all γ ∈ (0, 1), ∂γπ̃
α,γ
i ≥ 0.

Proof. Fix x ∈ (0, 1). To study (4.54b), we consider the minimal solution to the quadratic
equation

y = ω + (1− ω)(γx+ (1− γ)y)2, y ∈ [0, 1], (E1)

which is given by

yx(γ, ω) =
1− 2γ(1− γ)(1− ω)x−

√
1− 4γ(1− γ)(1− ω)x− 4(1− γ)2(1− ω)ω
2(1− ω)(1− γ)2

.

(4.59)
We show first that there exists a unique ω̄x ∈ (0, 1) such that for all γ ∈ (0, 1), ∂γyx(γ, ω̄x) =
0. By differentiation of (4.59) we have that, for x ̸= 1, ∂γyx(γ, ω̄x) = 0 for all γ ∈ (0, 1) if
and only if

ω̄x =
x

1 + x
.

Now, to determine the value of p = px compatible with yx(γ, ω̄x) = x, we study the equation

x = (1− q)px + (1− q)(1− px)x2 + qyx(γ, ω), (E0)
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which admits a solution x = yx(γ, ω) if and only if

px =
x

1 + x
,

from where we deduce ω̄x = px. Then, by implicit differentiation of (E0), valuating under
x = yx(γ, ω), we have for all γ ∈ (0, 1),

∂ω (∂γyx(γ, ω̄x)) = −
2(1− x)x(1 + x)2

(1− (1− 2γ)x)2
< 0.

In the final case, if x = 1 then from (E0), for all γ ∈ (0, 1), yx(γ, ω) = 1 too. In particular,
∂γyx(γ, ω) = 0 for all γ ∈ (0, 1) and ω ∈ (0, 1).

Finally, since from (E0), x ∈ (0, 1) 7→ yx(γ, ω) ∈ (0, 1) is increasing, if ∂ω∂γyx(γ, ω̄x) ≤ 0
for all fixed x, by the implicit function theorem, ∂ω∂γπ̃

α,γ
1 ≤ 0 .

Then, as in Lemma 4.4.6, we show now that there is an equivalence relation between
condition (4.58) and the spectral properties of the matrix

K̃α,γ
∞ := 2

∫ +∞

0

Ψ̃α(0, a)Bγ(a)da.

As in Lemma 4.4.6 we obtain

K̃α,γ
∞ = 2

[
(1− p̃)(1− q̃) + γq̃ (1− γ)q̃

(1− ω1)γ (1− ω1)(1− γ)

]
,

from which we can compute explicitly the eigenvalues, so that we are able to show that

ρ(K̃α,γ
∞ ) > 1 ⇐⇒ (4.58) is verified ⇐⇒ π̃α,γ∗

0 , π̃α,γ∗

1 < 1. (⋆)

Then, following Lemma 4.4.7, there is a unique λ̃α,γ ∈ R such that ρ(F̃α,γ(λ̃α,γ)) = 1. By
construction, λ̃α,γ = λα,γ − λα,γ∗. Indeed, λα,γ is the largest solution to (4.32) and then:

det

(
2

∫ +∞

0

e−(λα,γ−λα,γ∗ )sK̃α,γ(a, s) ds − I

)
= det

(
2

∫ +∞

0

e−λα,γsKα,γ(a, s) ds − I

)
= 0

In particular, for γ = γ∗, λ̃α,γ∗ = 0, and therefore by (⋆),

π̃α,γ∗

0 = π̃α,γ∗

1 = 1.

Now, suppose that γ∗ is such that ω1 < p̃. Then, by Lemma 4.11.1, for all γ ≥ γ∗,
π̃α,γ
0 = π̃α,γ

1 = 1. Then, by (⋆), ρ(K̃α,γ
∞ ) ≤ 1 for all γ ≥ γ∗. Therefore, again by Lemma

4.4.7, we have λ̃α,γ ≤ 0 for all γ ≥ γ∗, or equivalently, λα,γ ≤ λα,γ∗ for all γ ≥ γ∗. We
proceed analogously for the case ω1 > p̃ and ω1 = p̃. Finally, recalling from Proposition
4.5.3 that γ 7→ λα,γ is continuously differentiable, we obtain that

sign
(
∂γ λα,γ|γ=γ∗

)
= sign (ω1 − p̃) = sign

(
Pα,γ∗

δ(0,1)

(
Z̃T1 = 0

)
− Pα,γ∗

δ(0,0)

(
Z̃T1 = 0

∣∣∣Do not switch
))

.
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Finally, from (4.55) an (4.56) and by an integration by parts we obtain

ω1 = p̃ ⇐⇒ p = p̄(α, γ) :=
αξ0(λα,γ)ξ1(λα,γ) + λα,γ(ξ0(λα,γ) + ξ1(λα,γ)− 1)

(α + λα,γ)ξ0(λα,γ)
,

where

ξi(λ) :=

∫ +∞

0

e−λaβi(a) exp

(
−
∫ a

0

βi(s)ds

)
da

is the Laplace transform of the division time distribution of type i ∈ {0, 1}. Thus, for all
α, γ, p̄(α, γ) is uniquely defined.

4.12 Proofs of Section 4.6

4.12.1 Proof of Proposition 4.6.1
Proof. We adapt the general ideas developed on Section 5 of [113] and in Appendix A of
[32], extending Section 4.4 to the case where t 7→ p(t) is a continuous T -periodic function. If
we wish to allow discontinuities (for example to account for piecewise constant treatments)
we might follow the approach of [32], that requires to estimate supplementary controls.

By variation of parameters, if (λT ,ν,h) are solutions to (4.36a)-(4.36c) then

h(t, a) = 2

∫ +∞

a

e−λT (s−a)Ψ(a, s)B(t+ s− a, s)h(t+ s− a, 0)ds, (4.60)

ν(t, a) = e−λT aΨ⊤(0, a)ν(t− a, 0), (4.61)

For the first equation, valuated the integral at a = 0 we obtain that h(t, 0) is solution to the
integral fixed point problem

h(t, 0) = FλT
(t)h(·, 0) := 2

∫ +∞

0

e−λT aΨ(0, a)B(t+ a, a)h(t+ a, 0)da. (4.62)

Analogously, since ν must verify the boundary condition imposed by ν(t, ·) ∈ D(Q∗(t)), at
a = 0 we obtain that h(t, 0) is solution to the integral fixed point problem

ν(t, 0) = GλT
(t)ν(·, 0) := 2

∫ +∞

0

e−λT aB⊤(t, a)Ψ⊤(0, a)ν(t− a, 0)da. (4.63)

The sequel is classical. By Arzela-Ascoli Theorem, one shows that under the Assumptions
4.2.1, for all λ > 0 and t ≥ 0 the operators Fλ(t) and Gλ(t) are continuous, strictly positive
and compact. Thus, by Krein-Rutman Theorem there is a simple dominant eigenvalue µλ >
0 associated to eigenfunctions νλ(t, 0) and hλ(t, 0) . Then, by the maximum principle and
analogously as done in the proof of Lemma 4.4.7, we obtain that λ 7→ µλ is a continuous
and strictly decreasing map. Hence there is a unique λT such that µλT

= 1 with associated
eigenfunctions νλT

(t, 0) and hλT
(t, 0) . We can finally recover ν(t, a) and h(t, a) using the

reconstruction formulae (4.60) and (4.61).
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4.12.2 Technical lemmas
We recall some useful classical properties:

Proposition 4.12.1. Let S, T be two bounded linear operators in a Banach space X and let
α(S) the measure of non-compactness of S as defined in Definition 4.10.2. Then:

(i) α(S) ≤ ||S||op.

(ii) α(TS) ≤ α(T )α(S).

(iii) α(T + S) ≤ α(T ) + α(S).

(iv) α(S) = 0 if and only if S is compact.

Lemma 4.12.2. Let A and B two positive matrices such that Aij ≥ Bij for all pairs (i, j),
then:

(i) ρ(A) ≥ ρ(B), and

(ii) ρ(B) ≥ ρ(A)

(
1− maxi,j(Ai,j −Bi,j)

mini,j Ai,j

)
.
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Chapter 5

Regime switching on the propagation

speed of travelling waves of some

size-structured Myxobacteria

population models

This chapter is based on work conducted during CEMRACS 2022, in collaboration with
Vincent Calvez, Adil El Abdouni, Maxime Estavoyer, Florence Hubert, Julien Olivier
and Magali Tournus. It has been submitted to ESAIM: Proceedings and Surveys.

Abstract. The spatial propagation of complex populations can depend on some
structuring variables. In particular, recent developments in microscopy have
revealed the impact of bacteria heterogeneity on the population motility. Biofilms
of Myxococcus xanthus bacteria have been shown to be structured in clusters
of various sizes, which remarkably, tend to move faster when they consist of
a larger number of bacteria. We propose a minimal reaction-diffusion discrete
size-structured model modelling a population of Myxococcus with two possible
cluster sizes: isolated and paired bacteria. Numerical experiments show that
this model exhibits travelling waves whose propagation speed depends on the
increased motility of clusters, and the exchange rates between isolated bacteria
and clusters. Notably, we evince the existence of a characteristic threshold level
θ∗ on the ratio between cluster motility and isolated bacteria motility, which
separates two distinct regimes of propagation speed. When the ratio is below
θ∗, the propagation speed of the population is constant. However, when the
ratio is above θ∗, the propagation speed takes higher values. We also consider
a generalised model with continuous-size structure, which also shows the same
behaviour. We extend the model to include interactions with a prey population,
which show qualitative behaviours in agreement to the biological experiments.
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5.1 Introduction

Recent development in high-throughput cell segmentation techniques have allow microbi-
ologist to closely follow complexly structured bacterial populations [118]. Interactions be-
tween individuals, both cooperative and competitive, and the emergence of subpopulations
with distinct behaviours, have revealed the streaking effects that this underlying structure
might have across the different scales of the population dynamics [127, 6]. One important
dimension that might be affected is the way they explore their surroundings.

One interesting example of this is the behaviour of Myxococcus xanthus, a motile preda-
tory bacterium found on soil which forms multicellular biofilms to predate on other microor-
ganisms [146]. Thanks to high-throughput microscopy techniques, it has been shown that
this biofilm has not a homogeneous structure, but that it is in fact composed of bacteria
clusters of various sizes, from isolated individuals, to large swarms of closely adhered bac-
teria. In particular, recent works have shown that this clusters can exhibit distinct motility
behaviours, which depend on their size and composition, and that affect the macroscopic
motility of the population ensemble during the predatory incursions [123].

In particular, the cluster structure of M. xanthus populations has been shown to be de-
termined by the phenotypic heterogeneity among individual cells [123]. Indeed, M. xanthus
cells are capable to switch between two different motility regimes, namely: the adventurous
A-motility, and the social S-motility, which result from the expression of two distinct set
of genes [76]. A-motile cells can glide over the surface, using a complex protein machinery
that anchors and pushes the cell forward. S-type motion, on the other hand, is contact-
dependent. S-motile cells move thanks to the projection of pili, hair-like structures that
grow from the cell and can attach to other cells or the surrounding extracellular matrix, to
then retrace and drag the cell. This movement depends on the presence of one key compo-
nent of the extracellular matrix: the exopolysaccharides (EPS). EPS are secreted and laid
as a chemical trail by M. xanthus as it moves, which allows the adhesion and cohesion of
cells, thus favouring the emergence of swarms of bacteria which move collectively.

Importantly, the proportion of A-motile and S-motile cells, and therefore, the distribu-
tion of the cluster sizes, has been show to impact the fitness of M. xanthus populations. On
the one hand, the collective motion of S-motile cells can increase the efficiency of predation,
since killing is seemingly contact-dependent, and then is favoured by M. xanthus cell den-
sity in the predation forefront. On the other hand, predation is initiated by pioneer A-motile
cells that explore the area around the colony first (wolf-pack predation). Therefore, both
motility systems play synergistic roles [123].

In this work we aim to study the impact of cellular cohesion in the global motility of the
population. In particular, we will be interested in population dynamics in which individu-
als have an advantage when coagulating (social synergy), which is expressed as a higher
motility. To that extent, we will consider some spatial structured population models, where
besides a spatial variable coding for the the bacteria positions, we consider a structuring
variable which corresponds to the cluster size. Clusters of different sizes may grow, divide
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and coagulate, and from previous observations, larger clusters will diffuse at higher rates
[19].

In the paragraphs that follow we will introduce three models which will give some in-
sight into the phenomenons described above. In first place, a discrete-structure model, in
which we only consider two cluster sizes: singletons of isolated A-motile bacteria, and clus-
ters of two S-motile bacteria. In second place, we present a continuous cluster-size model
that generalises this model, accounting for the possibility to produce, by fragmentation and
coagulation, clusters of any size. Finally, we consider a derived predator-prey model, where
the bi-type clustered population introduced in the first model will interact with a prey pop-
ulation of E. coli.

5.2 Proposed models and main results

5.2.1 Discrete size model
Let us consider first a minimal model in which we have isolated bacteria (i.e. clusters of
size one) and paired bacteria (clusters of size two) that move in the real line. We suppose
that both species are well mixed and call p1(x, t) the number density of isolated bacteria,
and p2(x, t) the number density of clusters of size two, at a given location in space x ∈ R
and at a given time t ≥ 0. We suppose that p1 and p2 solve the following system of two
reaction–diffusion partial differential equations

∂tp1 = θ1∆p1 − τ1p21 + 2τ2p2 + αp1

(
1− p

K

)
, (5.1)

∂tp2 = θ2∆p2 +
τ1
2
p21 − τ2p2, (5.2)

with p the total number of bacteria, p = p1 + 2p2.
The first term in the right-hand side of Equations (5.1) and (5.2) is a diffusion term,

and describes respectively the spatial random movement of isolated bacteria and clusters
of bacteria. We assume that θ2 > θ1, i.e. clusters spread faster than isolated bacteria.
The second term τ1p

2
1 represents the coagulation of isolated bacteria, which happens at

rate τ1 > 0 and changes two isolated bacteria into one cluster of size two. The term τ2p2
corresponds to the fragmentation of clusters of size two, which happens at rate τ2 > 0 and
produces two isolated bacteria. Moreover, we assume that only isolated bacteria can divide.
This growth term is assumed to be logistic, with growth rate α > 0 and carrying capacity
K. As such, the model (5.1)-(5.2) is an extension of the Fisher-KPP model [54, 90], which
reduces to Fisher-KPP when τ2 = 0, decoupling the two equations.

Numerical simulations of this system allow us to conclude the existence of travelling
waves solutions for all positive parameters. Moreover, we observe two distinct regimes sep-
arated by a constant threshold level θ∗ for the ratio θ2/θ1. When θ2/θ1 < θ∗, the propagation
front consists on pulled waves. This is, the propagation speed is equal to the Fisher-KPP
speed. In this case, the population propagation is limited by the motility of the isolated
bacteria, so the cluster structure does not affect the speed. However, when θ2/θ1 > θ∗, the
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propagation front consists on so-called pushed waves. In this case, the propagation speed
is strictly bigger than the Fisher-KPP speed, thanks to the non negligible effect of the non-
linearity introduced by the coagulation term. In layman’s terms, we conclude that when
the motility of clusters is big enough with respect to the motility of isolated bacteria, the
collective behaviour of M. xanthus allows the whole population to propagate faster than in
the asocial case. We also observe that θ∗ is independent from the coagulation and fragmen-
tation rates. In particular, we can reduce the system to the case τ1, τ2 → +∞, which gives
us a scalar equation that we study numerically.

5.2.2 Continuous cluster-size model
In real life, the cluster structure of M. xanthus swarms can vary from lonely scout cells
to thousands of densely packed social bacteria. We can extend the model (5.1)-(5.2) to
a general Diffusion-Growth-Fragmentation-Coagulation model, described by (5.3)-(5.6),
where we define ρ(t, x, z) as the density number of clusters of size z ∈ [0, zmax] (or more
precisely, the total mass or volume of the cluster, which is a continuous variable) at position
x ∈ R and time t ≥ 0. The model is defined by the following integro-differential equation:

∂tρ(t, x, z) = ∂xx [θ(z)ρ(t, x, z)]− ∂z [v(z,m)ρ(t, x, z)] + F [ρ](t, x, z) + G[ρ](t, x, z), (5.3)

with

F [ρ](t, x, z) = 2

∫ zmax

z

β(z′)k(z′, z)ρ(t, x, z′) dz′ − β(z)ρ(t, x, z), (5.4)

G[ρ](t, x, z) = 1

2

∫ z

0

γ(z − z′, z′)ρ(t, x, z − z′)ρ(t, x, z′) dz′

− ρ(t, x, z)
∫ zmax−z

0

γ(z′, z)ρ(t, x, z′)dz′, (5.5)

and

m(t, x) =

∫ zmax

0

z′ρ(t, x, z′) dz′. (5.6)

As before, the first term in (5.3) corresponds to the spatial diffusion of the clusters,
though here the diffusion coefficient of a cluster is a function of its size. The second term in
(5.3) is a transport term and corresponds to the growth of cluster size by cell division within
each cluster. The function v(z,m) ≥ 0 is the instantaneous growth speed of a cluster of
size z when the total mass at its spatial position is m, as defined by (5.6). The third term in
(5.3), which is defined in (5.4), corresponds to the fragmentation of clusters, which occurs
at a fragmentation rate β(z) ≥ 0, which is a function of the cluster size. When a cluster of
size z fragmentates, it produces two clusters of respective sizes z′ and z−z′ with probability
k(z, z′)dz′ = k(z, z − z′)dz′. The first term in (5.4) corresponds to the creation of clusters
of size z by the fragmentation of cluster of larger sizes, while the second term corresponds
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to the loss of clusters of size z by fragmentation into clusters of smaller size. Finally, the
last term in (5.3) corresponds to the coagulation of clusters, as defined by the operator in
(5.6). Two clusters of respective sizes z an z′ coagulate at rate γ(z, z′), which we call the
coagulation rate. The first term in (5.6) corresponds to the creation of clusters of size z by
the coagulation of clusters of sizes z′ and z − z′, with z′ < z. The second term corresponds
to the loss of clusters of size z by coagulation with clusters of any other size.

The existence of travelling waves in spatial models with continuous structure has been
studied by various authors in many particular cases (for example [49, 21, 2, 67]). How-
ever, to our humble knowledge, the existence of travelling waves in structured populations
involving a coagulation operator is being studied numerically for the first time in this work.
Under certain assumptions, we exhibit numerically the existence of travelling waves con-
necting the null function to the stationary solution of the problem without diffusion. As
for the discrete model, we notice the existence of a diffusion coefficient value corresponding
to a threshold. That is, for a smaller diffusion coefficient, the wave speed is constant with
respect to this parameter and for a larger value, the wave speed increases.

5.2.3 Predator-prey model
M. xanthus are predator bacteria. This predation is initiated by isolated cells called scouts,
which explore the surroundings of the colony to identify possible nutrient sources [87].
Their attack strategy depends on several parameters, but it depends crucially on the prey
density [75]. This way, as prey become scarce, M. xanthus increase their scouting capabil-
ities and once the prey has been found, they can switch behaviours to start killing the prey
and consuming the nutriments they have released. Though the exact mechanism used by
M. xanthus to kill its prey remains badly understood, it is known that cell killing can only
occur at close proximity of M. xanthus (contact-dependent) [106, 15]. Moreover, cluster
size structure also play an important role in predation: whereas the forefront of the assault
is constituted mainly by singletons or small groups of scouts, the rear of the front is con-
stituted by rather big clusters with some distinct macroscopic behaviours, called swarms
[124].

To model this phenomenon, we extend the model (5.1)-(5.2) and suppose the existence
of another two bacterial types: diffusive individuals which move around alone or in clusters;
and eating individuals which are isolated bacteria and clusters capable to kill and eat the
prey, but which are kept immobile. This supplementary structure gives a total of 4 subtypes.
We call ρD1 (x, y, t) the density number of isolated bacteria in diffusing state, and ρE1 (x, y, t)
of isolated bacteria in eating state, which are solutions of

∂t ρ
D
1 = θ1∆ρ

D
1 + αρD1 (1− ρ)− τDE

1 (e)ρD1 + τED
1 (e)ρE1 − τ1(ρD1 )2 + 2τ2ρ

D
2 , (5.7)

∂t ρ
E
1 = τDE

1 (e)ρD1 − τED
1 (e)ρE1 + αρE1 (1− ρ)− τ1(ρE1 )2 + 2τ2ρ

E
2 . (5.8)

On the other hand, the density of clusters of two bacteria in diffusing state, ρD2 (x, y, t), and
those which eat, ρE2 (x, y, t), are given by

∂t ρ
D
2 = θ2∆ρ

D
2 +

τ1
2
(ρD1 )

2 − τ2ρD2 − τDE
2 (e)ρD2 + τED

2 (e)ρE2 , (5.9)
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Figure 5.1: Schematic representation of the model (5.7)-(5.11)

∂t ρ
E
2 = τDE

2 (e)ρD2 − τED
2 (e)ρE2 +

τ1
2
(ρE1 )

2 − τ2ρE2 . (5.10)

As previously we are interested in the situation in which clusters have got an enhanced
motility, so θ2 > θ1. Finally, the density of the prey, which is supposed to be immobile, is
given by

∂t e = −δ1ρE1 − δ2ρE2 ρ = ρD1 + ρE1 + 2
(
ρD2 + ρE2

)
. (5.11)

We define ρ as the total of predatory bacteria, i.e. ρ = ρE1 + ρD1 + 2ρE2 + 2ρD2 . The
model (5.7)-(5.11) is schematized in figure 5.1. We assume that the change between the
“diffusion” state and the “eating” state is dependent on the local amount of prey. Diffusing
bacteria can change state with a certain rate τDE

i , and conversely bacteria become diffusing
with a rate τED

i , with i = 1 or i = 2 which corresponds to the size of the cluster. We assume
that only isolated bacteria that eat can divide. The transitions between the clusters of two
bacteria and the isolated bacteria are the same as in the previous model. The proliferation
term is assumed to be logistic with a carrying capacity dependent on the total number of
bacteria, ρ. For the model (5.7)-(5.11), the Laplacian operator only depends on space, i.e.,
∆u(x, y, t) = ∂xxu(x, y, t)+∂yyu(x, y, t). This term corresponds to the movement of bacteria.
For the biological reasons mentioned above, it is assumed that the clusters of two bacteria
have a faster diffusion than the isolated bacteria, i.e. θ2 > θ1.

We assume that the rates of transitions between the “diffusion” and the “eating” state
are linearly dependent on the density of the prey e, i.e. τDE

i and τED
i are given by

τDE
i (e) = τDE

i e, and τED
i (e) = τED

i (emax − e), (5.12)

with emax the maximum in space of e(x, y, t = 0). As the density of the prey e decreases
over time, emax corresponds to the maximum of e in time and in space.

We perform a numerical analysis of this model. The simulations for different parameters
show that the model admits similarities with the biological experiments of predation by the
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Myxococcus xanthus bacterium. We notice that, as expected, the sociability and the strong
diffusion of the clusters play an important role in the speed of predation.

5.3 Discrete size model

5.3.1 Some properties of the mathematical model
We consider the equivalent nondimensional system given by

∂τρ1 = ∆ρ1 − k1ρ21 + 2k2ρ2 + ρ1 (1− ρ) , (5.13)

∂τρ2 = θ∆ρ2 +
1

2
k1ρ

2
1 − k2ρ2, (5.14)

where θ = θ2/θ1, k1 = Kτ1/α and k2 = τ2/α are the only three free parameters.
This model has a unique positive equilibrium point ρ⋆ = (ρ⋆1, ρ

⋆
2), given by

ρ⋆1 = 1− 2ρ⋆2, and ρ⋆2 =
2k1 + k2 −

√
k2(4k1 + k2)

4k1
,

with ρ⋆ = ρ⋆1 + 2ρ⋆2 = 1.
The point (0, 0) is another equilibrium point of the system (5.13)-(5.14). Linearising

around these equilibrium points, we obtain the following Jacobian matrices

J(0, 0) =

(
α 2k2 + 2α
0 −k2

)
, and, J(ρ⋆1, ρ

⋆
2) =

(
−2k1ρ⋆1 − α 2k2 − 2α

k1ρ
⋆
1 −k2

)
.

The point (0, 0) is unstable while the point ρ⋆ is stable we are in a monostable case.

Asymptotics in fast fragmentation-coagulation regime.

In order to simplify the theoretical study of the system (5.13)-(5.14), we look at the limit
where both rates k1 and k2 go towards infinity at the same speed (in the sense that k1/k2 <
+∞). This means that both cluster fragmentation and the coagulation of isolated bacteria
happen at the same time scale, which is much faster than the growth and diffusion time
scale. Equation (5.14) can be written

∂tρ2 − θ∆ρ2 = k1

(
1

2
ρ21 −

k2
k1
ρ2

)
. (5.15)

Since k1 → +∞, we must have 1
2
ρ21 − k2

k1
ρ2 = 0 in the RHS of Eq. (5.15). Then, recalling

that ρ = ρ1 + 2ρ2 we obtain

ρ1 = f(ρ) :=
−1 +

√
1 + 4k1

k2
ρ

2k1
k2

.
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Therefore, since 2ρ2 =
k1
k2
ρ21 =

k1
k2
f(ρ)2, adding equations (5.13) and (5.14)

∂tρ−∆ϕ(ρ) = F (ρ), (5.16)

with ϕ(ρ) := f(ρ) + θ k1
k2
f(ρ)2 and F (ρ) := f(ρ)(1− ρ). Thus,

ϕ′′(x) =
k1
k2
(θ − 1)

2
(
1 + 4k1

k2
x
)3/2 and F ′′(x) =

−2k1
k2

(1 + 4k1
k2
x)3/2

(1− x)− 2√
1 + 4k1

k2
x
.

Thereby, F is concave, positive and verifies F (0) = F (1) = 0. Moreover, we have that ϕ is
convex if θ > 1.

For the equation ∂tρ− θ∆ρ = F (ρ) with F concave, the minimal speed front is given by
c∗ = 2

√
θF ′(0) (see for instance [90]). On the other hand, the non-linear diffusion term of

Eq. (5.16) does not allow to directly apply this theory. Instead, we approach numerically
the minimal speed employing a shooting method. The method is build upon the analysis of
the phase plane (ρ, (ϕ(ρ))′). We start by looking for solutions of the form

ρ(x, t) = p(x− ct), (t, x) ∈ R2,

with c the unknown front speed that we want to determine. We are interested in solutions
connecting the equilibrium state p = 1 (in −∞) with the equilibrium state p = 0 (in +∞).
Then, from (5.16), we obtain

−cp′ − (ϕ(p))′′ = F (p), (5.17)

and if we set q = (ϕ(p))′ we obtain the following system
p′ =

1

ϕ′(p)
q,

q′ =
−c
ϕ′(p)

q − F (p),

lim
ξ→−∞

p(ξ) = 1, lim
ξ→+∞

p(ξ) = 0.

So the problem is to find the wave speed c ∈ R and the C2 wave profile p : R −→ [0, 1] which
solve the previous system. For this, we performed a shooting method. We test proposal
values of c, and simulate the associated profile p. If p become negative at a certain moment,
we reject the value of c and try a larger one, until obtaining an admissible profile. We
will compare this speed with the one obtained by numerical simulations of the population
dynamics. The method used and the results are given in the next paragraph and Figure 5.2,
which is discussed further below.

5.3.2 Numerical simulations
We simulate Eq. (5.13)-(5.14) using a splitting method with a semi-implicit finite difference
scheme. This is, we the diffusion and reaction terms in two separate steps. For the first one,
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we use an implicit numerical scheme, and for the latter we use the RK4 explicit scheme. We
extend the same method to simulate the two-dimensional model of Eq. (5.7)-(5.11), which
is presented further below.

Using this method, we approximate numerically the solutions of (5.13)-(5.14) for dif-
ferent values of the cluster’s relative diffusion coefficient θ > 1 and for equal fragmentation
and coagulation rates k = k1 = k2 = k. We let vary k and θ and study whether the total
population density ρ behaves as a wave of the form ρ(x, t) = u(x−ct) with u(ξ) ∼ exp(−λξ).
The coefficient λ is the rate of exponential decay towards the stable state 0 and gives the
form of the front. When the system admits indeed travelling wave solutions, we extract
numerically the values of c and λ from the simulated solutions to (5.13)-(5.14). We explain
below the methods used.

In first place, to obtain the wavespeed we compute at each time-step tn the estimator ĉn
defined by

ĉn :=
J∑

j=1

ρn(xj)− ρn−1(xj)

∆t
∆x, (5.18)

where {xj = j∆x}j∈{0,...,J} is the space grid. As ∆x,∆t→ 0, cn converges to the wavespeed.
Indeed, if we suppose that we admit wave solutions which are of the form ρ(t, x) = u(x−ct),
with u(ξ) → 1 as ξ → −∞, and u(ξ) → 0 as ξ → +∞, then ∂tρ = −c∂xρ. Integration of
this equation with respect to x gives

c =

∫ +∞

−∞
∂tρ(t, x)dx. (5.19)

Equation (5.18) is then a finite difference discretisation of the the time derivative and the
spatial integral in the latter expression.

In second place, the value λ of the exponential decay constant is computed by fitting an
exponential curve to the wavefront, using a least squares estimator.

Fig. 5.2 gives the results of c (panel A and C) and λ (panel B) extracted for θ ∈ [0, 30]
and k1 = k2 = k ∈ [0, 15]. We recall that in the Fisher-KPP case we have c = 2 and λ = 1.
In particular, this values correspond to the regime where the cluster structure do not affect
the propagation speed of the population. In this case, the population front is said to be pulled
by the isolated bacteria, which are the leading component at the front. Fig. 5.2-A and 5.2-C
shows the existence of a critical diffusion coefficient θ∗ near the value θ = 3 such that for all
θ < θ∗ the wave speed correspond to the Fisher-KPP (pulled) case, and that for all θ > θ∗,
the speed is strictly bigger than the Fisher-KPP speed. In the latter case, the population
wave is said to be pushed. The speed of propagation is determined by the whole front,
including the clusters of bacteria, which therefore contribute to the overall acceleration.
A formal definition of pulled and pushed waves in the context of the inside dynamics of
the population can be consulted in [63]. So, to summarise, if the diffusion coefficient of
the clusters is sufficiently larger than the diffusion coefficient of isolated bacteria (around 3
times bigger), the whole population advances faster than in the Fisher-KPP case, switching
from a pulled regime, where the speed is limited by the isolate bacteria speed, to a pushed
regime, where the speed is enhanced by the social behaviour of the bacteria. Moreover,
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Figure 5.2: Numerical results of the nondimensional system of Eq. (5.13)-(5.14) for different values
of the cluster’s relative diffusion coefficient θ > 1 and for equal fragmentation and coagulation rates
k = k1 = k2. A. Wavefront propagation speed c as function of θ and k. Contour levels are also
indicated along the coloured heatmap. The speed is obtained using (5.18). The critical value of
c = 2 is reached near the ordinate θ = 3, highlighted in red. B. Exponential decay rate λ of the total
population wavefront. The line θ = 2+k corresponds to the regime change expected by the heuristic
(Section 5.7). C. Value of the wavefront speed c as function of the clusters’ diffusion coefficient θ,
for various values of k (solid line). The value predicted by the shooting method described in Section
5.3.1 in the limit k → +∞ is also presented (dotted line).

the value of this critical θ∗ appears to be constant for all k > 0, so this regime switch is
independent of the fragmentation-coagulation rate.

The analysis of the exponential decay of the front λ can shed some light about the regime
switching in speed. Fig. 5.2-B shows that the critical Fisher-KPP value of λ = 1 is reached
in our simulations around two lines: first, around the constant θ = 3, which corresponds to
the actual threshold observed for the speed regimes; and second, around the line θ = 2+ k.
In particular, some heuristic calculations make it possible to explain formally this threshold
(see Section 5.7). We see however that this line is not associated with a change of regime
in the speed.

Finally, in Fig.5.2-C we can see the value of c approximated by the shooting method
in the asymptotic k → +∞. This results, which are obtained trough a completely different
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numerical approach, confirm the independence of the threshold θ∗ with respect to k and help
validate also the results obtained from our numerical scheme.

5.4 Continuous cluster-size model
We make the following assumptions about the functions of the model (5.3)-(5.6)

γ(z′, z) = γz′z, β(z) = βz, v(z,m) = αz(1−m/κ), ∀z ∈ [0, zmax], (5.20)

with γ > 0 a constant coagulation rate by squared unit of size, β > 0 a constant fragmenta-
tion rate by unit of size, κ > 0 a carrying capacity with respect to the sum of the individual
sizes of the population, and α > 0 some constant growth rate by unit of size, and m is the
total mass of the system as defined by Eq. (5.6).

To begin with, we assume that the diffusion coefficient is defined by

θ(z) = θ1, for all z ∈ [0, zmax] . (5.21)

Under the assumptions (5.20) and (5.21), we have the following equations on n and m:

∂tn = θ∂xxn+ βm

(
1− α

2β
m

)
, (5.22)

and
∂tm = θ∂xxm+mα(1−m/κ). (5.23)

Note that Eq. (5.23) corresponds to a Fisher-KPP equation. This equation admits traveling
wave type solutions. Searching for a travelling wave for the model (5.3)-(5.6), we define
the variable ξ(z) = x − c(z)t, where c(z) is a function of z corresponding to the unknown
invasion speed. We denote, ρ, the wave profile, given by

ρ(t, x, z) = p(ξ(z)), (5.24)

with the following limits

p(−∞) = f(z), p(+∞) = 0̃(z.) (5.25)

Where 0̃ corresponds to the null function and f(z) to a stationary stable solution of the
following system

∂tq(t, z) = −∂z [v(z,m)q(t, z)] + F [q](t, z) + G[q](t, z). (5.26)

The equation (5.26) corresponds to the system (5.3)-(5.6) without diffusion. In theory
we do not know the function f , we approximate it using a numerical simulation. For our
parameter values the shape of f(z) is a peak close to z = 0.

In figure 5.3-A, we see an example of a traveling wave type solution for the model
(5.3)-(5.6). The initial data is given by ρ(x, z, 0) = f̃(z)1x≤30, where f̃(z) is the numerical
solution of the equation (5.26). Between the time t = 30 and t = 50, the state f̃(z) spatially
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invades the null state. According to our numerical simulations, for these parameter values,
the speed of the traveling wave solutions of the equation (5.24) seems to be independent of
z and is similar to the speed of the traveling waves of the moments of order 0 and 1 given by
the equations (5.22) and (5.23). Traveling waves for the termm and n are illustrated in the
panel B of figure 5.3. The colorimetry represents the progression of time, blue for t = 0 and
red for t = 80. For this initial data, it is known that the selected speed of the traveling wave
for m corresponds to the critical wave speed, i.e. 2

√
αθ. In theory, if the system (5.3)-(5.6)

admits solutions of traveling waves, the moments have them too. Moreover, the speed of the
traveling waves of the moments is necessarily less than or equal to the speed of the traveling
wave of the model (5.3)-(5.6).

Now, for the biological reasons mentioned above, we assume that θ is an increasing
function of z. For numerical reasons, we define θ as

θ(z) =

{
θ1 , si z ≤ s,

θ2 , si z > s,
(5.27)

with θ1, θ2 two positive constant such that θ2 > θ1 and s a positive constant.
The figure 5.4 corresponds to the evolution of the numerical speed of the traveling wave

of the moment of order 1 as a function of θ2, for the model (5.3)-(5.6) with θ defined by
(5.27). We observe, once again, the existence of a threshold θ̃2. Indeed, for θ2 ≤ θ̃2, we
notice that the speed of the traveling wave seems to be very close to the speed cKPP = 2

√
θ1α

and becomes strictly larger for θ2 > θ̃2. For θ2 sufficiently large, we notice that the growth
is of order

√
θ2, as for the discrete model (5.1)-(5.2).

5.5 Prey-predator model

Figure 5.5 corresponds to the numerical simulation of the system (5.7)-(5.11) which takes
into account two types of bacteria, the first type ρEi is immobile and can consume its prey
while the second ρEi diffuses. The density of the prey, for example E. coli, is shown in red.
The green color corresponds to the density of bacteria which diffuse, ρD1 +2ρD1 , and in blue
the bacteria which consume the prey, ρE1 + 2ρE1 . The initial data, represented in the figure
5.5 (top panel) are chosen to be as close as possible to the biological experiments. At first
the bacteria are in the “diffusion” state, looking for prey. Some of the diffusing bacteria
will, on contact with the prey, change state to become bacteria that consume the prey. This
behavior will tend to reduce the spread of predation in areas with high prey density. For
example, the propagation of predatory bacteria is faster in the middle of E. coli than on
these edges with a higher initial density (See Figure 5.5 lower left panel). Gradually, the
prey will be consumed and will disappear.

To understand the importance of sociability in predator propagation, we define a model
similar to the system (5.7)-(5.11) for which isolated cells cannot regroup to form a cluster.

174



5.5. PREY-PREDATOR MODEL

Figure 5.3: A. Example of traveling wave for the model (5.3)-(5.6) under the assumptions (5.20)
and (5.21). The state f(z) spatially invades the state 0̃(z) for all z. Concerning the initial data, we
assume that, at time t = 0, the density is given by ρ(x, z, 0) = f(z)1x≤x0 with some positive constant
x0. The parameter values are θ1 = 1, α = 1, β = 1, γ = 1, κ = 1. B. Representation over time of
the numerical solutions m(x, t) and n(x, t) (Left n and right m). The color represents the time, blue
t = 0 and red t = Tend and the colorimetry is linear. The initial data and parameters value are the
same as above.
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Figure 5.4: Speed of the traveling wave of the equation (5.23), obtained by numerical simulations,
for different θ2, under assumption (5.27). Similarly to the discrete model, there is a threshold θ̃2
such that for all θ2 ≤ θ̃2 the speed of the wave is cKPP = 2

√
αθ1 = 2, and for θ2 > θ̃2, the speed

becomes strictly higher than the speed cKPP. The parameter values are similar to those in Figure
5.3.

The model is defined by
∂t ρ

D
1 = θ1∆ρ

D
1 + αρD1 (1− ρ)− τDE

1 (e)ρD1 + τED
1 (e)ρE1 ,

∂t ρ
E
1 = τDE

1 (e)ρD1 − τED
1 (e)ρE1 + αρE1 (1− ρ),

∂t e = −δ1ρE1 ,
ρ = ρD1 + ρE1 .

(5.28)

In the figure 5.6 we observe the importance of sociability on the speed of predation. The
left part corresponds to the numerical simulation of the model (5.28) at time t = 0 and at
time t = 8 and on the right it corresponds to the numerical simulation of the system (5.7)-
(5.11) at the same times. For both simulations we take similar initial data and parameters
shared by both models have the same values. For equations (5.8) and (5.10), the parameter
values for the bacteria clusters are similar to the values for the isolated bacteria, except for
the diffusion coefficient. Under these assumptions, we observe in Figure 5.6 (bottom panel)
that for the (5.7)-(5.11) model, the prey, shown in red, is consumed more quickly. This
increase in the speed of invasion is due to the diffusion advantage of the clusters. Indeed, in
the case θ2 = θ1 for the (5.7)-(5.11) model, the speed of predation appears to be the same
as the speed obtained with the associated (5.28) model.
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Figure 5.5: Numerical simulations of the model (5.7)-(5.11), under the assumption (5.12). The
density of bacteria which diffuse, ρD1 +2ρD2 , is represented in green and the density of bacteria which
consume the prey, ρE1 + 2ρE2 , is represented in blue. The prey density, e, is represented shown in
red. The initial data are shown in the top panel, they are chosen to be as close as possible to the
biological experiments. The initial distribution of predatory bacteria is assumed to be homogeneous
on a circle, while the initial distribution of prey is assumed to be arranged on a circle with a higher
density on the edges. At time t = 0, there are no predatory bacteria in the “eating” state. The
bottom panel represents the densities at time, t = 8, the predatory bacteria spread and reached the
prey, which then began to consume the prey. The parameter values for this numerical simulation
are θ1 = 1, θ2 = 2, α = 1, τ1 = 2, τ2 = 1, τDE

1 = τDE
2 = 1, τED

1 = τED
2 = 1, δ1 = δ2 = 2.
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Figure 5.6: The distribution of E. coli at time t = 0 (top) and t = 8 (bottom) is represented in red,
for the model (5.28) (left) and for the model (5.7)-(5.11) (right). For both simulations, we assume
the linear transition hypothesis (5.12). We assume that there are no benefits other than diffusion,
therefore δ2 = δ1, τED

2 = τED
1 and τDE

2 = τDE
1 . Under this assumption, predation is faster for the

model (5.7)-(5.11) than for the model (5.28). The values of the parameters are the same as in the
figure 5.5

178



5.6. CONCLUSIONS AND PERSPECTIVES

Figure 5.7: Numerical simulations of the model (5.7)-(5.11) with different diffusion coefficients. The
distribution of E. coli is represented in red at time t = 8 with the same initial data. The coefficient θ
is defined as the ratio of θ2 and θ1, i.e. θ := θ2/θ1 and corresponds to the advantage/disadvantage of
cluster diffusion. For the simulation on the left, we assume that θ = 1 and for the simulation on the
right we assume that θ = 6. The values of the other parameters are the same for both simulations
and are those in figure 5.5.

The speed of predation is strongly correlated with the value of the parameter θ2. Con-
trary to the previous model, the lesser advantage given to clusters has an effect on the
predation speed. The figure 5.7 corresponds to two numerical simulations of the system
(5.7)-(5.11) at time t = 8 for two different coefficients θ2. The other parameter values and
the initial data are similar. The prey density, represented in red, is much lower for a larger
θ2 coefficient. We see that the speed of predation is an increasing function of θ := θ2/θ1, for
θ > 1.

5.6 Conclusions and perspectives
We studied the effect of social behaviour on the motility of Myxococcus xanthus popula-
tions. Previous in vitro experiments have showed that the capacity to constitute clusters
of bacteria that move collectively begets an enhanced predation efficiency. Our numerical
experiments shed some light onto this phenomenon. We have first considered a minimal
model in which isolated bacteria are able to form clusters of two bacteria which diffuse col-
lectively. The simulations suggest that when the clusters diffuse at least 3 times faster
than the isolated individuals, the speed of propagation of the whole population is bigger
than the critical Fisher-KPP speed (pushed wave). Otherwise, if clusters do not diffuse fast
enough, the speed of the population is limited by the propagation speed of isolated individ-
uals (pulled wave). The threshold separating the pushed and pulled regimes seems to be
unique and independent from the rates of fragmentation and coagulation. In particular, us-
ing a shooting method, the same regime separation was found numerically in the asymptotic
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case of infinitely fast fragmentation and coagulation.
We also considered two extensions. First, we considered a continuous cluster-size model

written as an integro-differential equation with some fragmentation and coagulation oper-
ators. Under some biologically meaningful choices of parameterisation for these operators,
we show that the total number of individuals (zero-th order moment) and total sum of clus-
ter sizes (first order moment) of the structured population exhibit travelling waves whose
speed is also characterised by a threshold in the diffusion coefficient, below which the speed
coincides with Fisher-KPP critical speed. This result seems to extend the regime separa-
tion observed in the discrete case to a more general class of population dynamics. In this
case, as the population wavefront progresses, the cluster structure of the rear of the wave
is distributed according to the steady-state distribution of cluster sizes, and the travelling
wave connects the steady-state to the null function.

Finally, we considered an extended model in which isolated and clustered bacteria are
both able to switch towards an eating state when they encounter a positive density of prey.
However, they become immobile in this state. With the purpose of observing the effect of
clusters in the predatory efficiency, we compared the propagation fronts obtained in presence
and absence of clustering. The numerical simulations indicate that the prey is consumed
faster when the bacteria are allowed to cluster. In that case, the speed of predation is an
increasing function of the ratio of the diffusion coefficients of clusters and isolated bacteria.

Regime separation in the discrete case, particularly in the fast fragmentation-coagulation
asympototic, can motivate some theoretical investigations which are not explored here. For
example, approaches relying in the variational characterisation of the wave speed can be
adapted to obtain bounds on the diffusion threshold θ∗. The numerical simulations can also
be extended to include some more realistic cases, accounting for the complex cluster struc-
ture of swarms and scouts.

5.7 Heuristics on the θ = 2 + k threshold line
We give some explanations on the critical threshold θ = 2 + k observed in Fig. 5.2-B at
which λ = 1. To that extent, suppose the existence of a wavefront solution ρ(t, x) = ρ(x−ct)
with unknown speed c. Let z = x− ct. PDE system (5.13)-(5.14) reduces to the following
system of second-order ODE on the variable z:

−c∂zρ1 = ∂zzρ1 − k1ρ21 − 2k2ρ2 + ρ1 (1− ρ) ,
−c∂zρ2 = θ∂zzρ2 +

1
2
k1ρ

2
1 − k2ρ2,

ρ = ρ1 + 2ρ2.

Now, let’s suppose that in the forefront of the population the number of isolated individuals
and clusters is such that we are under the following heuristic hypothesis

(H0) : ρ21 ≪ ρ2 ≪ ρ1,

such that under (H0) the first ODE becomes

−cρ1 = ∂zzρ1 − ρ1.
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This is equivalent to the linearisation of Fisher-KPP Equation, for which the critical speed
is c = 2. Moreover, the solution profile is of the form ρ1(z) = C1 exp(−λz), with λ = 1.
Now, let’s come back to the second ODE and replace ρ1. We get

−c∂zρ2 − θ∂zzρ2 + k2ρ2 =
k1
2
C2

1e
−2λz.

We solve this equation finding a solution of the form

ρ2(z) = Ae−µz +Be−2λz,

for some unknown value µ. In particular, for the particular solution, the constant B is such
that (

2λc− 4θλ2 + k2
)
B =

k1
2
C2

1 .

Thus, at the critical value λ = 1 we obtain

(2c− 4θ + k2)B =
k1
2
C2

1 ,

which for 2c− 4θ + k2 ̸= 0 begets

B =
C2

1k1
2 (2c− 4θ + k2)

.

On the other hand, for the constant µ, we have:

cµ− θµ2 + k2 = 0.

Thus, for a discriminant ∆ = c2 + 4θk2 > 0, we obtain the solutions:

µ± =
−c±

√
c2 + 4θk2
−2θ

=
c∓
√
c2 + 4θk2
2θ

.

Since µ+ < 0, we consider only the solution with µ = µ−. The critical transition should
occur at the moment whenH0 is not verified anymore, and thus the non-linear effects are not
negligible. In particular, when we are just at the threshold level, we also have the critical
Fisher-KPP values µ = 1 and c = 2 which gives√

1 + θk2 = θ − 1,

from which we derive the relation θ = 2 + k2. Therefore we should expect that, at fixed k2,
(H0) is violated for all θ > 2 + k2, and thus we transit from a pulled to a pushed regime.
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Appendix A

Construction and well-posedness of

the measure-valued stochastic

process Zt

We consider the rigurous trajectorial construction of the measure-valued process Zt de-
scribed in Chapter 2, but extended to allow two discrete SOS types, as in Chapter 4. Al-
thought the model considered in Chapter 4 is structured in age only, and not within the
adder framework, the construction gives us the foundations for future works considering
multitype age-and-size structured populations.

We follow closely the approach of Tran [140] for age-structured populations, where the
assumption of uniformly bounded division rates is made by the author. In our case however,
the divison rate β(a, y) = λyB(a) is inherently unbounded, since it is at least linear in y.

A.1 Construction of the process

Let X = {(a, y) : a ≥ 0, a ≤ y} and X̃ = X × {0, 1}. The state of the structured population
at any instant t is given by the point measure Zt ∈Mp(X̃ )

Zt =
Nt∑
i=1

δξi(t) (A.1)

where Nt = ⟨Zt, 1⟩ is the population size at time t, and each cell i is characterised by the
vector ξi(t) = (xi(t), ai(t), yi(t)) ∈ X̃ where:

• xi(t) ∈ {0, 1} is the SOS level of cell i at time t.

• ai(t) ∈ R+ is the added size from birth to current time t

• yi(t) ∈ R+ is the current size at time t

We introduce the following functions which will parametrise the process:
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APPENDIX A. CONSTRUCTION OF THE PROCESS

• We consider the case of exponential growth y′(t) = g(y(t)) = λy(t). Let Φt : X̃ → X̃
the deterministic flow associated to growth along some time t, as given by Eq. (2.2)
and (2.3) (see Fig. 2.2):

Φt(x, a, y) = (x, a+ y exp(λt)− y, y exp(λt)) (A.2)

• B : {0, 1} ×R+ → R+ is the adder division rate which is a function of the added size
a and the SOS type x:

B(x, a) = (1− x)B0(a) + xB1(a), (A.3)

where B0 is the low SOS adder division rate and B1 is thigh SOS adder division rate.

• d : R+ × {0, 1} × R+ → R+ is the death rate which is function of the antibiotic
concentration, the SOS type and the current size. We let

d(c, x, y) = (1− x)d0(c) + xd1(y), (A.4)

with d0 the low SOS death rate, which depends on the antibiotic concentration c only,
and d1 the high SOS death rate, which depends on the cell size only.

• α(c) ≥ 0 is the switch rate from low SOS to high SOS type, which is function of the
antibiotic concentration c.

• We call
Γ(c, x) = Γ(c, x, a, y) := (1− x)α(c) + λyB(x, a) + d(c, x, y) (A.5)

the individual cumulative rate, which is the sum of the three individual rates of the
independent events introduced above.

• Fx : [0, 1]→ R+ is the probability density function of the ratio between the size of the
first daughter (which is always low SOS) and the size of the mother. It depends on
the the SOS type x.

For low SOS cells (x = 0), Fx is symmetrical with respect to 1
2
, such that F0(ρ) =

F0(1− ρ).

The concentration of the antibiotic is fixed at c, and for now we will allow us to drop the
variable c in the functions defined above.

We introduce some auxiliary variables to help the writing of the dynamics of Zt.

Definition A.1.1. On a probability space (Ω,F ,P) large enough, let θ ∼ Unif [0, 1], ρ ∼
F0, χ ∼ F1, all mutually independent random variables and ξ = (x, a, y) the traits of the
individual chosen to be replaced. We define the following variables:
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• A(θ, x) is the replacement event which occurs:

A(θ, x) :=


switch if θ ≤ (1−x)α

Γ(ξ)

division if (1−x)α
Γ(ξ)

< θ ≤ (1−x)α+λyB(x,a)
Γ(ξ)

death if θ ≥ (1−x)α+λyB(x,a)
Γ(ξ)

(A.6)

• J(A) is the number of substitutes obtained in each replacement:

J(A) :=


1 if A = switch
2 if A = division
0 if A = death

(A.7)

• HA
j (x|ρ, χ) ∈ X , for 1 ≤ j ≤ J(A), is a random vector with the traits of the j-th

substitute among the J(A) substitutes obtained when the chosen event is A.

For the switch we have:

Hswitch
1 (x, a, y|ρ, χ) = (1− x, a, y) (A.8)

In the case of division:

Hdivision
1 (x, a, y|ρ, χ) = (0, 0, ((1− x)ρ+ xχ) y) (A.9)

Hdivision
2 (x, a, y|ρ, χ) = (x, 0, (1− ((1− x)ρ+ xχ)) y) (A.10)

where the first child is always low SOS (x = 0) and the second child inherit the type of
its mother. Notice that if the mother is low SOS (x = 0) the ratio between the size of
the first child and its mother is ρwhich follow the distribution given by F0. Otherwise,
if the mother is high SOS (x = 1) the ratio is χ which is distributed according to F1.

Since J(death) = 0 we let Hdeath
1 undefined, and use the convention

∑0
j=1Hj = 0.

Definition A.1.2. Let Y i
t := Yi(Zt) where Yi is the i-th coordinate of the projection

Y

(
n∑

i=1

δ(xi,ai,yi)

)
:= (y1, y2, ..., yn, 0, 0, ...) (A.11)

where the particles are ordered with respect to a certain pre-established order ≼ of X̃ (e.g.
lexicographical order or by vertical position when we include the variable h as in Chapter
2). And analogously let Ai, Xi be respectively the i-th coordinate (also under ≼) of the
projections

A

(
n∑

i=1

δ(xi,ai,yi)

)
:= (a1, a2, ..., an, 0, 0, ...) (A.12)

X

(
n∑

i=1

δ(xi,ai,yi)

)
:= (x1, x2, ..., xn, 0, 0, ...) (A.13)

And let X i
t := Xi(Zt), Ai

t := Ai(Zt). We define finally ξit = (X i
t , A

i
t, Y

i
t ).
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We construct the process Zt as follows

Definition A.1.3. On (Ω,F ,P) consider the definitions introduced above and

1. Let E = N∗ ×R+ × [0, 1]2 and N a Poisson point measure over R+ × E with intensity
ds⊗ n(di)⊗ du⊗ dθ⊗ F0(ρ)dρ⊗ F1(χ)dχ , where dx is the Lebesgue measure and n
is the counting measure over N∗.

2. Let Z0 ∈Mp

(
X̃
)

such that

E [⟨Z0, 1⟩] <∞ E [⟨Z0, Y ⟩] <∞ (A.14)

We construct of Zt ∈Mp

(
X̃
)

as the solution to the Stochastic Differential Equation (SDE)

Zt =

⟨Z0,1⟩∑
i=1

δΦt(ξ
i
0)

+

∫ t

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

J(A(θ,ξi
s− ))∑

j=1

δ
Φt−s◦H

A(θ,ξi
s−

)

j (ξis− |ρ,χ)
− δΦt−s(ξis−)


N (ds, di, du, dθ, dρ, dχ)

(A.15)

The interpretation of Eq. (A.15) is as follows: the first term indicates that we let the
initial population evolve until time t according to the deterministic dynamics Φt which are
given by the growth dynamics. Then, if at time s < t a jump event occurs for the individual
i, we remove it from the remaining time t − s (term −δΦt−s(ξis)) and we add the eventual
substitutes, which evolve deterministically for the remaining time t−s, until the next jump.
Remark that the process thus constructed is Markovian. Moreover, in Proposition A.1.7
and in the subsequent Eq. (A.47) we show that the infinitesimal generator of Zt captures
the desired dynamics.

Definition A.1.4. Let R ∈ R+ and Zt defined by (A.15) . For every t ≥ 0 we define the
total number Nt and the total mass Mt of the population as

Nt = ⟨Zt, 1⟩ (A.16)

Mt = ⟨Zt, Y ⟩ =
∫
X̃
yZt(dx, da, dy) (A.17)

Since for any t ≥ 0 these quantities are finite but unbounded we introduce the stopping time

τR = inf {t ≥ 0 : Nt ∨Mt ≥ R} (A.18)

The next proposition gives the dynamics of a test function applied to population.
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Proposition A.1.5. For any test function f ∈ C0,0,1,1
b (X̃ ), Zt defined by (A.15) solves the

SDE

⟨Zt, f⟩ = ⟨Z0, f⟩+
∫ t

0

〈
Zs− , g · (∂af + ∂yf)

〉
ds

+

∫ t

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

J(A(θ,ξi
s− ))∑

j=1

f

(
H

A(θ,ξi
s− )

j

(
ξis− |ρ, χ

))
− f

(
ξis−
)

N (ds, di, du, dθ, dρ, dχ)

(A.19)

Proof. Let f ∈ C0,0,1,1
b (X̃ ). Applying Zt defined by (A.15) to f gives directly:

⟨Zt, f⟩ =
⟨Z0,1⟩∑
i=1

f
(
Φt(ξ

i
0)
)

+

∫ t

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

[ J(A(θ,ξi
s− ))∑

j=1

f

(
Φt−s ◦H

A(θ,ξi
s− )

j

(
ξis−|ρ, χ

))

− f
(
Φt−s

(
ξis−
)) ]
N (ds, di, du, dθ, dρ, dχ)

(A.20)

Since the growth is given by the deterministic dynamics (A.2), recalling that a′(t) = y′(t),
the Fundamental Theorem of Calculus gives for any t ≥ 0 :

f ◦ Φt (x, a, y) = f(x, a, y) +

∫ t

0

d

du
f ◦ Φu (x, a, y) du

= f(x, a, y) +

∫ t

0

g(y(u)) (∂af (x, a(u), y(u)) + ∂yf (x, a(u), y(u))) du

= f(x, a, y) +

∫ t

0

(g · (∂a + ∂y) f) ◦ Φu(x, a, y)du (A.21)

Moreover after a simple substitution we get

f ◦ Φt−r (x, a, y) = f(x, a, y) +

∫ t

r

(g · (∂a + ∂y) f) ◦ Φu−r(x, a, y)du (A.22)

Applying it to (A.20) we obtain

⟨Zt, f⟩ =
⟨Z0,1⟩∑
i=1

f
(
ξi0
)
+ I1 + I2

+

∫ t

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

J(A(θ,ξi
s− ))∑

j=1

f

(
H

A(θ,ξi
s− )

j

(
ξis− |ρ, χ

))
− f

(
ξis−
)

N (ds, di, du, dθ, dρ, dχ)

(A.23)
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where

I1 =

⟨Z0,1⟩∑
i=1

∫ t

s

λY i
0 e

λs · (∂a + ∂y)
(
f ◦ Φs(ξ

i
0)
)
ds (A.24)

and

I2 =

∫ t

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

[
J(A(θ,ξi

s− ))∑
j=1

∫ t

s

λY i
s e

λ(r−s) · (∂a + ∂y)

(
f ◦ Φr−s

(
H

A(θ,ξi
s− )

j

(
ξis−|ρ, χ

)))
dr

−
∫ t

s

λY i
s e

λ(r−s) · (∂a + ∂y)
(
f ◦ Φr−s(ξ

i
s−)
)
dr

]
N (ds, di, du, dθ, dρ, dχ)

(A.25)

Since ∂af and ∂yf are bounded, applying Fubini-Tonnelli Theorem on I2 we have

I2 =

∫ t

0

∫ r

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

[
J(A(θ,ξi

s− ))∑
j=1

λY i
s e

λ(r−s) · (∂a + ∂y)

(
f ◦ Φr−s

(
H

A(θ,ξi
s− )

j

(
ξis− |ρ, χ

)))

− λY i
s e

λ(r−s) · (∂a + ∂y)
(
f ◦ Φr−s(ξ

i
s−)
) ]
N (ds, di, du, dθ, dρ, dχ)dr

(A.26)

Therefore

I1 + I2 =

∫ t

0

{ ⟨Z0,1⟩∑
i=1

(g · (∂af + ∂yf)) ◦ Φr(ξ
i
0)dr +

∫ r

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

[
J(A(θ,ξi

s− ))∑
j=1

(g · (∂af + ∂yf)) ◦ Φr−s

(
H

A(θ,ξi
s− )

j

(
ξis−|ρ, χ

))

− (g · (∂af + ∂yf)) ◦ Φr−s(ξ
i
s−)

]
N (ds, di, du, dθ, dρ, dχ)

}
dr

=

∫ t

0

〈
Zr, g · (∂af + ∂yf)

〉
dr

(A.27)

where in the last line we identified Zt applied to function g ·(∂af + ∂yf) as defined by (A.20).
Finally, replacing (A.27) in (A.23) gives the result.

A.1.1 Existence and uniqueness of Zt

Let consider the following control hypothesis on the division and death rates:
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(B1) There is a positive constant b̄ such that Br(a) ≤ b̄ for both s ∈ {0, 1} and every a ≥ 0;

(B2) There is a positive constant c such that dr(y) ≤ c(1 + y) for both s ∈ {0, 1} and every
y ≥ 0.

Proposition A.1.6. If (B1), (B2) and (A.14) are verified, then the SDE has a well-defined
solution (Zt)t≥0 ∈ D

(
R+,Mp

(
X̃
))

which verifies for every T > 0

E

[
sup

s∈[0,T ]

⟨Zs, 1⟩+ ⟨Zs, Y ⟩

]
≤ E [⟨Z0, 1⟩+ ⟨Z0, Y ⟩] exp

(
λ(b̄+ 1)T

)
<∞ (A.28)

Proof. Let X > 0. We can almost surely construct algorithmically a solution (Zt)t≥0 to
(A.15), by means of the procedure detailled in Section A.2 until the stopping time τX defined
by (A.18). Now, we check that the sequence of jump instants (Tk)k∈N goes to +∞ a.s. as
k →∞. Consider the stopped process Z̄t = Zt∧τX . By (A.19) applied to f ≡ 1 we have:

⟨Z̄t, 1⟩ = ⟨Z̄0, 1⟩+
∫ t

0

∫
E1
1{i≤⟨Z̄s− ,1⟩,u≤Γ(ξi

s− )}
[
J(A(θ, ξis−))− 1

]
N (ds, di, du, dθ) (A.29)

≤ ⟨Z̄0, 1⟩+
∫ t

0

∫
E0
1{i≤⟨Z̄s− ,1⟩,u≤λY i

s−
B(Ri

s−
,Ai

s−
)}N (ds, di, du) (A.30)

where E0 = N∗×R+ and E1 = E0× [0, 1]. The last inequality is obtained thanks to J(A) > 1
only for the division event, and the measures F0(ρ)dρ, F1(χ)dχ, and dθ are all probability
measures. Then, taking expectation we get

E

[
sup

s∈[0,t∧τX ]

⟨Z̄s, 1⟩

]
≤ E

[
⟨Z̄0, 1⟩

]
+

∫ t

0

E

 sup
u∈[0,s∧τX ]

⟨Z̄u,1⟩∑
i=1

λYiBxi
(Ai)

 ds (A.31)

≤ E
[
⟨Z̄0, 1⟩

]
+ λb̄

∫ t

0

E

 sup
u∈[0,s∧τX ]

⟨Z̄u,1⟩∑
i=1

Yi

 ds (A.32)

Moreover, now applying (A.19) to Y (x, a, y) = y we have

⟨Z̄t, Y ⟩ = ⟨Z̄0, Y ⟩+
∫ t

0

〈
Z̄s, λy

〉
ds−

∫ t

0

∫
E0
1{i≤⟨Z̄s− ,1⟩,u≤d(Xi

s−
,Y i

s−
)}Y

i
s−N (ds, di, du)

(A.33)

Deprecating the negative term and taking expectation we obtain

E

[
sup

s∈[0,t∧τX ]

⟨Z̄s, Y ⟩

]
≤ E

[
⟨Z̄0, Y ⟩

]
+ λ

∫ t

0

E

[
sup

u∈[0,s∧τX ]

〈
Z̄u, Y

〉]
ds (A.34)
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Thus, adding (A.32) and (A.34) we obtain

E

[
sup

s∈[0,t∧τX ]

〈
Z̄s, 1

〉
+
〈
Z̄s, Y

〉]
≤ E

[
⟨Z̄0, 1⟩+ ⟨Z̄0, Y ⟩

]
+ λ(b̄+ 1)

∫ t

0

E

[
sup

u∈[0,s∧τX ]

〈
Z̄u, Y

〉]
ds

(A.35)

Therefore, by Grönwall Lemma, for all T <∞ we get

E

[
sup

s∈[0,T∧τX ]

〈
Z̄s, 1

〉
+
〈
Z̄s, Y

〉]
≤ E

[
⟨Z̄0, 1⟩+ ⟨Z̄0, Y ⟩

]
exp

(
λ(b̄+ 1)T

)
<∞ (A.36)

In particular we deduce that τX → ∞ a.s. as X → ∞. Indeed, suppose the contrary. In
this case, one may find T0 <∞ such that P (supX τX < T0) = ε > 0. However, this implies
E
[
sups∈[0,T0∧τX ]

〈
Z̄s, 1

〉
+
〈
Z̄s, Y

〉]
≥ 2εX for every X which contradicts (A.36), since the

RHS couldn’t be bounded independently to X.
Now, we can make X →∞ with the Fatou Lemma to obtain the bound (A.28):

E

[
lim inf
X→∞

sup
s∈[0,t∧τX ]

〈
Z̄s, 1

〉
+
〈
Z̄s, Y

〉]
≤ lim inf

X→∞
E

[
sup

s∈[0,t∧τX ]

〈
Z̄s, 1

〉
+
〈
Z̄s, Y

〉]
(A.37)

≤ E
[
⟨Z̄0, 1⟩+ ⟨Z̄0, Y ⟩

]
exp

(
λ(b̄+ 1)t

)
<∞ (A.38)

Finally, we deduce that also Tk → +∞ a.s. As before, we show it by an absurd argument.
Suppose that we may find T0 < ∞ such that P (supk Tk < T0) > 0. Now, suppose that this
implies P (limk→∞ ⟨ZTk

, 1⟩ ∨ ⟨ZTk
, Y ⟩ = +∞) > 0. In that case, for every X > 0 we should

have τX ≤ T0 which contradicts τx →∞ a.s. as proven above. So, let’s prove now that under
the absurd assumption we have indeed P (limk→∞ ⟨ZTk

, 1⟩ ∨ ⟨ZTk
, Y ⟩ = +∞) > 0. Suppose

it’s not true. Then, we should have X ′ > 0 such that P (supk ⟨ZTk
, 1⟩ ∨ ⟨ZTk

, Y ⟩ < X ′) > 0.
Thus, we can construct the sequence (Tk)k as a subsequence of the jumping times of a homo-
geneous Poisson process with intensity Γ̄ = α+λb̄X ′+c(1+X ′) by an acceptance-rejection
method. But this should give limk Tk = +∞ a.s., which is absurd if P (supk Tk < T0) > 0.

A.1.2 Infinitesimal generator and martingale problem

Proposition A.1.7. Let ν ∈Mp(X̃ ) deterministic such that

⟨ν, 1⟩ = N0 <∞ (A.39)
⟨ν, Y ⟩ =M0 <∞ (A.40)
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Then, the process defined by (A.15) with initial condition Z0 = ν is a Markovian process
with infinitesimal generator given by : for any U ∈ C1

b (R) and f ∈ C0,0,1,1
b (X̃ ):

QUf (ν) = U ′(⟨ν, f⟩)⟨ν, g · (∂af + ∂yf)⟩+∫
X̃

{
(1− r)α [U (⟨ν, f⟩ − f(x, a, y) + f(1− x, a, y))− U (⟨ν, f⟩)]

+

∫ 1

0

λyB(x, a)Fx(ρ)[U(⟨ν, f⟩ − f(x, a, y)

+ f(0, 0, ρy) + f(x, 0, (1− ρ)y))− U (⟨ν, f⟩)] dρ

+ d(x, y) [U (⟨ν, f⟩ − f(x, a, y))− U (⟨ν, f⟩)]

}
ν(dx, da, dy)

(A.41)

where we have defined Uf (Z) := U(⟨Z, f⟩). In particular the law of (Zt)t≥0 does not depend
on the chosen order ≼.

Proof. Let U ∈ C1
b (R) and f ∈ C0,1,1

b (X̃ ). Let X ∈ R+ such that X > N0∨M0 and consider
the stopped process Zt∧τX with τX introduced by (A.18). Applying Itô’s formula with jumps
[80] to (A.19) we get:

Uf (Zt∧τX ) := U (⟨Zt∧τX , f⟩)

= U(⟨Z0, f⟩) +
∫ t∧τX

0

U ′(⟨Zs, f⟩)⟨Zs, g · (∂af + ∂yf)⟩ds

+

∫ t

0

∫
E
1{i≤⟨Zs,1⟩,u≤Γ(ξis)}

[
U

⟨Zs, f⟩ − f(ξis) +
J(A(θ,ξis))∑

j=1

f
(
H

A(θ,ξis)
j

(
ξis|ρ, χ

))
− U (⟨Zs, f⟩)

]
N (ds, di, du, dθ, dρ, dχ)

(A.42)

Then

Eν [Uf (Zt∧τX )] = ⟨ν, f⟩+ Eν

[∫ t∧τX

0

U ′(⟨Zs, f⟩)⟨Zs, g · (∂af + ∂yf)⟩ds
]

+ Eν

[∫ t∧τX

0

∫
E
1{i≤⟨Zs,1⟩,u≤Γ(ξis)}

{
U

(
⟨Zs, f⟩ − f(ξis)

+

J(A(θ,ξis))∑
j=1

f
(
H

A(θ,ξis)
j

(
ξis|ρ, χ

)))
− U (⟨Zs, f⟩)

}

N (ds, di, du, dθ, dρ, dχ)

]

= ⟨ν, f⟩+ Eν

[∫ t∧τX

0

ψUf
(s, Z)ds

]
(A.43)
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where

ψUf
(s, Z) = U ′(⟨Zs, f⟩)⟨Zs, g · (∂af + ∂yf)⟩+∫

X̃

∫
[0,1]2

{
(1− x)α [U (⟨Zs, f⟩ − f(x, a, y) + f(1− x, a, y))− U (⟨Zs, f⟩)]

+ λyB(x, a)[U(⟨Zs, f⟩ − f(x, a, y) + f(0, 0, ((1− x)ρ+ xχ)y)

+ f(x, 0, (1− ((1− x)ρ+ xχ))y))− U (⟨Zs, f⟩)]

+ d(x, y) [U (⟨Zs, f⟩ − f(x, a, y))− U (⟨Zs, f⟩)]

}
F0(ρ)F1(χ)

dρ dχ Zs(dr, da, dy)

(A.44)

Since F0, F1, G are probability distributions the previous expression simplifies into

ψUf
(s, Z) = U ′(⟨Zs, f⟩)⟨Zs, g · (∂af + ∂yf)⟩+∫

X̃

{
(1− x)α [U (⟨Zs, f⟩ − f(x, a, y) + f(1− x, a, y))− U (⟨Zs, f⟩)]

+

∫ 1

0

λyB(x, a)Fx(ρ)[U(⟨Zs, f⟩ − f(x, a, y)

+ f(0, 0, ρy) + f(x, 0, (1− ρ)y))− U (⟨Zs, f⟩)] dρ

+ d(x, y) [U (⟨Zs, f⟩ − f(x, a, y))− U (⟨Zr, f⟩)]

}
Zs(dr, da, dy)

(A.45)

Now, we want to calculate

QUf (ν) =
∂

∂t
Eν [Uf (Zt)]

∣∣∣∣
t=0

=
∂

∂t
Eν

[∫ t

0

ψUf
(s, Z)ds

]∣∣∣∣
t=0

Let T > 0 and consider the application Ψν : [0, T ] ∋ t 7→
∫ t∧τX
0

ψUf
(s, ν)ds. Since, by Hyp.

(B1) and (B2) we have

i. Ψv(t) ≤ TX
(
λX||(∂af + ∂yf)||∞||U

′||∞ + (α + λb̄X + c(1 +X))||U ||∞
)
< +∞ a.s.

ii. Since τX > 0 a.s. and ν is a right-continuous measure, Ψv(t) is a.s. differentiable at
t = 0 with derivative:

∂

∂t
Ψν(0) = ψUf

(0, ν)

given by (A.45) evaluated in r = 0, Z = ν.

iii. Moreover, since ν verifies (A.39) and (A.40), ψUf
(0, ν) is a.s. dominated by

λM0N0||(∂af + ∂yf)||∞||U
′||∞ +N0(α + λB̄M0 + c(1 +M0))||U ||∞ < +∞
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So, by the dominated convergence theorem, the application t 7→ Eν [Ψν(t)] is differ-
entiable in t = 0, and the derivative commutes with the expectation, obtaining

QUf (ν) = E [∂tΨν(0)] = ψUf
(0, ν) (A.46)

which gives indeed the infinitesimal generator of (A.41).

In particular if we take U = Id the identity function in (A.41) we obtain

Q⟨ν, f⟩ =
∫
X̃

{
λy (∂a + ∂y) f(x, a, y) + (1− x)α [f(1− x, a, y)− f(x, a, y)]

+

∫ 1

0

λyBx(a)Fx(ρ)[f(0, 0, ρy) + f(x, 0, (1− ρ)y)− f(x, a, y)]dρ

− d(x, y)f(x, a, y)

}
ν(dx, da, dy)

=

∫
X̃

Qf(x)ν(dx)

(A.47)

This expression evinces that the process defined by (A.15) follows the Markovian dynamics
we are interested in. The first term captures the deterministic growth, and the summands of
the integral capture the effect of SOS type switching, cell division and death, respectively.

Proposition A.1.8. Let Z0 ∈ Mp(X̃ ) such that E [⟨Z0, 1⟩] < +∞ and E [⟨Z0, Y ⟩] < +∞.
Then for every f ∈ C0,0,1,1

b (X̃ ) we have that

(
M f

t

)
t≥0

:=

(
⟨Zt, f⟩ − ⟨Z0, f⟩ −

∫ t

0

⟨Zs,Qf⟩ ds
)

t≥0

(A.48)

is a square-integrable càdlàg martingale with zero expectation, with Q defined by (A.47),
and whose quadratic variation is

⟨M f⟩t =
∫ t

0

∫
X̃

{
(1− x)α [f(1− x, a, y)− f(x, a, y)]2

+

∫ 1

0

λyBx(a)Fx(ρ)[f(0, 0, ρy) + f(x, 0, (1− ρ)y)− f(x, a, y)]2dρ

+ d(x, y)f 2(x, a, y)

}
Zs(dr, da, dy)ds

(A.49)
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Proof. Starting from (A.19), and introducing the compensated Poisson punctual measure
Ñ associated to N we have:

⟨Zt, f⟩ = ⟨Z0, f⟩+M f
t +

∫ t

0

∫
X̃
g(ξ) (∂af(ξ) + ∂yf(ξ))Zs(dξ)ds

+

∫ t

0

∫
X̃

∫
[0,1]3

Γ(ξ)

J(A(θ,ξ))∑
j=1

f
(
H

A(θ,ξ)
j (x|ρ, χ)

)
− f (ξ)

 dθdρdχZs(dξ)ds

(A.50)

where

M f
t =

∫ t

0

∫
E
1{i≤⟨Zs− ,1⟩,u≤Γ(ξi

s− )}

J(A(θ,ξi
s− ))∑

j=1

f

(
H

A(θ,ξi
s− )

j

(
ξis− |ρ, χ

))
− f

(
ξis−
)

Ñ (ds, di, du, dθ, dρ, dχ)

(A.51)

is a local martingale associated to the stopping times (τk)k defined by (A.18).
Then, integrating in θ and using the definitions introduced in A.1.1 we obtain:

⟨Zt, f⟩ = ⟨Z0, f⟩+M f
t +

∫ t

0

∫
X̃
g(x) (∂af(x) + ∂yf(x))Zs(dx)ds

+

∫ t

0

∫
X̃

{
(1− x)α [f(1− x, a, y)− f(x, a, y)]

+

∫ 1

0

λyBx(a)Fx(ρ)[f(0, 0, ρy) + f(x, 0, (1− ρ)y)− f(x, a, y)]dρ

− d(x, y)f(x, a, y)

}
Zs(dr, da, dy)ds

= ⟨Z0, f⟩+M f
t +

∫ t

0

∫
X̃

Qf(ξ)Zs(dξ)ds

(A.52)

where we recognised the generator Q from Eq. (A.47).
Now, to obtain the bracket of M f

t let’s begin by applying Itô’s formula to (M f
t∧τk)

2:

(M f
t∧τk)

2 = ⟨Zt∧τk , f⟩
2 − ⟨Z0, f⟩2

− 2

∫ t∧τk

0

⟨Zs, f⟩
∫
X̃

{
g(x) (∂af(x) + ∂yf(x)) + (1− x)α (f(1− x, a, y)− f(x, a, y))

+

∫ 1

0

λyBx(a)Fr(ρ) (f(0, 0, ρy) + f(x, 0, (1− ρ)y)− f(x, a, y))

− d(x, y)f(x, a, y)

}
Zs(dx, da, dy)ds

(A.53)
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Moreover, by using Itô’s formula (A.42) applied to U : x 7→ x2 we obtain:

⟨Zt∧τk , f⟩
2 = ⟨Z0, f⟩2 +

∫ t∧τk

0

2⟨Zs, f⟩⟨Zs, g · (∂af + ∂yf)⟩ds

+

∫ t∧τk

0

∫
E
1{i≤⟨Zs,1⟩,u≤Γ(ξis)}

[⟨Zs, f⟩ − f(ξis) +
J(A(θ,ξis))∑

j=1

f
(
H

A(θ,ξis)
j

(
ξis|ρ, χ

))2

− ⟨Zs, f⟩2
]
N (ds, di, du, dθ, dρ, dχ)

(A.54)

Therefore

⟨Zt∧τk , f⟩
2 − ⟨Z0, f⟩2 −

∫ t∧τk

0

2⟨Zs, f⟩⟨Zs, g · (∂af + ∂yf)⟩ds

−
∫ t∧τk

0

∫
X̃

{
(1− x)α

[
(⟨Zs, f⟩ − f(x, a, y) + f(1− x, a, y))2 − ⟨Zs, f⟩2

]

+

∫ 1

0

λyBx(a)Fx(ρ)

[
(⟨Zs, f⟩ − f(x, a, y) + f(0, 0, ρy) + f(x, 0, (1− ρ)y))2 − ⟨Zs, f⟩2

]

+ d(x, y)

[
(⟨Zs, f⟩ − f(x, a, y))2 − ⟨Zs, f⟩2

]}
Zs(dr, da, dy)ds

(A.55)

is a martingale, which is equal to

⟨Zt∧τk , f⟩
2 − ⟨Z0, f⟩2 − ⟨M f⟩t

− 2

∫ t∧τk

0

⟨Zs, f⟩
∫
X̃

{
λy (∂af(x, a, y) + ∂yf(x, a, y)) + (1− x)α (f(1− x, a, y)− f(x, a, y))

+

∫
K

∫ 1

0

λyBx(a)Fx(ρ) (f(0, 0, ρy) + f(x, 0, (1− ρ)y)− f(x, a, y))

− d(x, y)f(x, a, y)

}
Zs(dr, da, dy)ds

(A.56)

which equals (M f
t∧τk)

2 − ⟨M f⟩t∧τk with ⟨M f⟩t as defined by Eq. (A.49). The uniqueness of
Doob decomposition shows then that ⟨M f⟩t∧τk is indeed the quadratic variation of M f

t∧τk .
Finally, to conclude, since τk → +∞ a.s. when k → ∞ (see proof of Prop. 4.8.2), we
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can make k →∞ with the Fatou lemma, which gives thanks to Hypothesis (B1) and (B2):

E
[
⟨M f⟩t

]
≤ lim inf

k→∞
E
[
⟨M f⟩t∧τk

]
≤ ||f ||2∞

(
2α sup

s∈[0,t]
⟨Zs, 1⟩+ 3λb̄ sup

s∈[0,t]
⟨Zs, Y ⟩+

c( sup
s∈[0,t]

⟨Zs, 1⟩ sup
s∈[0,t]

⟨Zs, Y ⟩)
)

which is finite by Prop. 4.8.2. Therefore E
[
⟨M f⟩t

]
<∞ and thusM f

t is a square-integrable
true martingale with quadratic variation as defined by Eq. (A.49).

A.2 Simulation of the process
Since the adder-dependent jump rates are unbounded, a classic acceptance-rejection algo-
rithm to construct an exact solution (Zt)t≥0 of (A.15) on [0,∞[, based on the simulation of
a Poisson process that dominates Zt is not possible.

Remark however that, to build a solution Zt over a bounded interval [0, T ] we can use a
homogeneous Poisson process with intensity

Γ̄ = N0 sup
y≤ȳ0 expλT

{α + λ(B0(y) ∨B1(y)) + d0(y) ∨ d1(y)} (A.57)

where ȳ0 is the size of the biggest initial cell. This is a very coarse bound, especially for
large values of T . So acceptance-rejection schemes based on this bound could result in too
frequent rejections.

Alternatively, one can simulate first, for each newborn individual, random realizations
of the division and death sizes thanks to Proposition A.2.1 below. Then, since the growth
is deterministic, the jump times will be deterministic functions of the division/death size,
the initial size and the elongation rate. Thereby, using the distributions for the final sizes
we can exactly simulate the jumping times for each individual cell. We give the details of
this scheme in the next paragraph.

A.2.1 An exact simulation algorithm
We compute the conditional distributions of the sizes at division and death:

Proposition A.2.1. For every individual :

• Conditionally to the division event, the probability density of having added some size
a before division, given the SOS type r, is

η(a|x) = Bx(a) exp

(
−
∫ a

0

Bx(x)dx

)
(A.58)

• Conditionally to the death event, the probability density of having size y at the moment
of death, given the SOS type r, the initial size y0 and the elongation rate λ is

ζ(y|x, y0) =
dx(y)

λy
exp

(
−
∫ y

y0

dx(s)

λs
ds

)
1y≥y0 (A.59)
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Proof. Fix x ∈ {0, 1}, y0 > 0. η is obtained by direct differentiation of (A.2). Now, since
the death rate is a function dx of the size, we have that, conditionally to the death event, the
lifetime τ of the cell, given the SOS type x and the initial size y0 is distributed by

P(τ ≤ t|x, y0) = exp

(
−
∫ τ

0

dx(y(u))du

)
= exp

(
−
∫ τ

0

dx(y0 exp(λu))du

)
(A.60)

Therefore, the conditional size at death is random variable Y defined by

Y = y0 exp (λτ) (A.61)

Then, by (A.60):

P(Y ≤ y|x, y0) = P
(
τ ≤ 1

λ
log

(
y

y0

)∣∣∣∣x, y0) (A.62)

= exp

(
−
∫ 1

λ
log

(
y
y0

)
0

dx(y0 exp(λu))du

)
(A.63)

= exp

(
−
∫ y

y0

dr(y
′)

λy′
dy′
)

(A.64)

and we obtain ζ by differentiation.

Now we construct a solution to (A.19) as follows.

1. Take a initial cell i ≤ N0, let ξi = (x, a, y) the vector of its traits.

2. Draw Y ∼ ζ(·|x) which is the presumed death size, and draw A ∼ η(·|x, y) which is
the presumed added size before division.

3. Then, the time to death is given by

Tdeath =
1

λ
log

(
Y

y

)
(A.65)

The time to division is given by

Tdivision =
1

λ
log

(
y + A− a

y

)
(A.66)

And the time to switch is obtained by drawing an exponential random variable of
parameter (1− x)α

Tswitch ∼ Exp((1− x)α) (A.67)

4. The jumping time for i is Ti = Tdeath ∧ Tdivision ∧ Tswitch and the jumping event is ℓi
which realises the minimum, i.e. such that Ti = Tℓi.

5. Repeat (1-4) for any other initial cell.
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6. Let j ≤ N0 such that Tj = mini≤N0 {Ti}. S1 = Tj is the first instant of jump.

7. a) If ℓj = switch, remove xj = (x, a, y) from ZTj
and add x′ = (1− x, a, y).

b) If ℓj = division, remove xj = (x, a, y) from ZTj
and draw ρ ∼ Fr. Add x′ =

(0, 0, ρy) and x′′ = (x, 0, (1− ρ)y) to ZTj
.

c) If ℓj = death, remove xj = (x, a, y) from ZTj

8. For any newly produced cell xi repeat (1-4).

9. Let j ≤ NS1 such that Tj = mini≤NS1
{Ti}. Call S2 = Tj and repeat (7-8).

10. In general: Let j ≤ NSk
such that Tj = mini≤NSk

{Ti}. Call Sk+1 = Tj the (k + 1)-th
jump and repeat (7-8).

This construction, while exact, requires to draw random variables for each newborn cell
which can be computationally extensive. Indeed, reasonable bounds on the total jump rate
at each step can provide good approximations based on acceptance-rejection schemes. In
the next section we provide an example.

A.2.2 Approximate simulation algorithm
We propose an approximate simulation algorithm which uses the following individual bounds:
for each living individual i of trait ξi = (xi, ai, yi) at time tk, where k ∈ N counts the number
of jumps, we put

Γ̄i
tk
= sup

y≤yieλ∆t

Γ(xi, ai + y − yi, yi) (A.68)

with Γ defined by (A.5), and where ∆t is a fixed time window. The (k+1)-th division event
is tk + τ where τ is drawn from a Exponential distribution with rate

Γ̄tk =

Ntk∑
i=1

Γ̄i
tk

(A.69)

The bound is justified if the next event arrives before tk+∆t. Thus, we aim to have a ∆t big
enough to guarantee τ ≤ ∆t, but small enough to avoid frequent rejections. The detailed
algorithm is explained in the pseudo-code 1 for a population issued from a single initial cell.
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Algorithm 1: Simulation scheme for (Zt)t≥0 defined by (A.15)
Data: Initial cell ξ0 = (x0, a0, y0), simulation time T , calibration time ∆t
Result: Ordered list ZT = ((xi, ai, yi))1≤i≤N of living cells ;

List MT of mother cells which have divided before T
1 Add (x0, a0, y0) to ZT ;
2 Initialise t = 0 and the population size N0 = 1 ;
3 while t ≤ T do
4 Γ̄←−

∑Nt

i=1 Γ̄
i;

5 Draw a random variable τ ∼ Exp
(
Γ̄
)

;
6 foreach i ∈ {1, ..., Nt} do
7 yi ←− yi exp(λτ) (growth dynamics)

8 Γ←−
∑Nt

i=1 λyiB(xi, ai) + (1− xi)α + d(xi, yi);
9 Draw a random variable v ∼ Unif([0, 1]) ;

10 if Γ/Γ̄ ≤ v then
11 Calculate individual jump probabilities

pi =
λyiB(xi, ai) + (1− xi)α + d(xi, yi)

Γ
;

12 Draw j ∼Mult({p1, ..., pNt}) ;
13 Draw θ ∼ Unif([0, 1]) ;

14 if θ ≤ λjyjB(xj, aj)

Γ
then

15 Draw ρ ∼ F (s, ·);
16 Remove cell j from ZT and add (xj, aj, yj) to MT ;
17 Append new individuals (0, ρyj) and (xj, 0, (f1− ρ)yj) in the positions j

and j + 1 in ZT ;
18 Nt+τ ←− Nt + 1 ;

19 else if θ ≤ λyjB(xj, aj) + (1− xj)α
Γ

then
20 Remove cell j from ZT ;
21 Append the new individual (1− xj, aj, yj) at position j in ZT ;

22 else
23 Remove cell j from ZT ;

24 t←− t+ τ ;
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Titre : Modèle de croissance cellulaire sous l’action d’un stress : Émergence d’hétérogénéité et impact de
l’environnement

Mots clés : Populations structurées, Modèles individu-centrés, Données single-cell, Plasticité phénotypique

Résumé : Cette thèse porte sur l’analyse statis-
tique et mathématique de la croissance cellulaire à
l’échelle individuelle sous l’effet d’un stress. À partir
de l’analyse des données recueillies dans le labora-
toire de M. El Karoui, nous avons construit différents
modèles permettant une scompréhension à différents
niveaux de l’impact que la réponse hétérogène au
stress génotoxique (réponse SOS) a sur la croissance
d’une population de bactéries E. coli. Pour modéliser
la dynamique de ces populations on utilise des pro-
cessus stochastiques à valeurs mesures.
Nous construisons tout d’abord un modèle stochas-
tique basé sur le modèle ”adder” de contrôle de la
taille, étendu pour incorporer la dynamique de la
réponse SOS et son effet sur la division cellulaire.
Le cadre choisi est paramétrique et le modèle est
ajusté par maximum de vraisemblance aux données
de lignées individuelles obtenues en mother machine.
Cela nous permet de comparer quantitativement les
paramètres inférés dans différents environnements.
Nous nous intéressons ensuite aux propriétés er-
godiques d’un modèle plus général que ”adder”,
répondant à des questions ouvertes sur son com-
portement en temps long. On considère un flot

déterministe général et un noyau de fragmentation
non nécessairement auto-similaire. Nous montrons
l’existence des éléments propres. Ensuite, une h-
transformée de Doob avec la fonction propre nous
ramène à l’étude d’un processus conservatif. Enfin,
en montrant une propriété de petite set pour les com-
pacts de l’espace d’états, nous obtenons alors la
convergence exponentielle du modèle.
Finalement, nous considérons un modèle bitype
structuré en âge modélisant la plasticité phénotypique
observée dans la réponse au stress. Nous étudions
la probabilité de survie et le taux de croissance de la
population en environnement constant et périodique.
Nous mettons en lumière un trade-off pour avoir la
survie de la population, ainsi qu’une sensibilité par
rapport aux paramètres du modèle qui n’est pas la
même pour la probabilité de survie et pour le taux de
croissance.
Nous concluons avec une section indépendante,
initiée durant le CEMRACS 2022. Nous étudions
numériquement la propagation spatiale des popula-
tions structurés en taille modélisant le mouvement
collectif de clusters de Myxobactéries à travers de
systèmes d’équations de réaction-diffusion.

Title : Model of Cellular Growth under Stress: Emergence of Heterogeneity and Impact of the Environment

Keywords : Structured Population Dynamics, Individual-Based Models, Single-cell data, Phenotypic plasticity

Abstract : This thesis focuses on understanding
individual-scale cell growth under stress. Starting from
the analysis of the data collected in M. El Karoui’s lab,
we have developed various models to comprehend
the impact of the heterogeneous response to geno-
toxic stress (SOS response) on the growth of a Esche-
richia coli bacteria populations. We employ measure-
values stochastic processes to model the dynamics of
these populations.
Firstly, we construct a stochastic model based on the
”adder” size-control model, extended to incorporate
the dynamics of the SOS response and its effect on
cell division. The chosen framework is parametric,
and the model is fitted by maximum likelihood to indi-
vidual lineage data obtained in mother machine. This
allows us to quantitatively compare inferred parame-
ters in different environments.
Next, we explore the ergodic properties of a more ge-
neral model than the ”adder,” addressing open ques-
tions about its long-time behaviour. We consider a
general deterministic flow and a fragmentation ker-

nel that is not necessarily self-similar. We demons-
trate the existence of eigenelements. Then, a Doob h-
transform with the foud eigenfunction reduces the pro-
blem to the study of a conservative process. Finally,
by proving a ”petite set” property for the compact sets
of the state space, we obtain the exponential conver-
gence.
Finally, we consider a bitype age-structured model
capturing the phenotypic plasticity observed in the
stress response. We study the survival probability
of the population and the population growth rate in
constant and periodic environments. We evince a
trade-off for population establishment, as well as a
sensitivity with respect to the model parameters that
differs for survival probability and growth rate.
We conclude with an independent section, collabo-
rative work initiated during CEMRACS 2022. We in-
vestigate numerically the spatial propagation of size-
structured populations modeling the collective mo-
vement of Myxobacteria clusters via a system of
reaction-diffusion equations.
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